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Abstract 

As diagnostic classification models become more widely used in large-scale operational 

assessments, we must give consideration to the methods for estimating and reporting reliability. 

Researchers must explore alternatives to traditional reliability methods that are consistent with 

the design, scoring, and reporting levels of diagnostic assessment systems. In this paper we 

describe and evaluate a method for simulating retests to summarize reliability evidence at 

multiple reporting levels. We evaluate how the performance of reliability estimates from 

simulated retests compares to other measures of classification consistency and accuracy for 

diagnostic assessments that have previously been described in the literature, but which limit the 

level at which reliability can be reported. Overall, the findings show that reliability estimates 

from simulated retests are an accurate measure of reliability and are consistent with other 

measures of reliability for diagnostic assessments. We then apply this method to real data from 

the Examination for the Certificate of Proficiency in English to demonstrate the method in 

practice and compare reliability estimates from observed data. Finally, we discuss implications 

for the field and possible next directions. 

 Keywords: diagnostic assessment, reliability, test-retest, simulation 
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Using Simulated Retests to Estimate the Reliability of Diagnostic Assessment Systems 

Reliability of an assessment is a necessary and important source of validity evidence. 

Consistency of measurement must be demonstrated to support the valid interpretation and use of 

results. In the oft-given example, using a measuring tape to measure the length of a box should 

produce the same result each time. The same can be said of measurement in education. If a test is 

administered twice and provides accurate measurement of knowledge, skills, and understandings, 

the respondent should, in theory, receive the same score each time. This is the concept behind 

test-retest reliability (Guttman, 1945). Instances in which scores vary from one administration to 

the next indicate that the assessment lacks precision and that results are conflated with 

measurement error, which has an obvious negative impact on the validity of inferences made 

from the results. 

In large-scale standardized testing environments, it is often impractical to administer the 

same assessment twice. Retest estimates may also be attenuated if knowledge is not retained 

between administrations or inflated if a practice effect is observed. For these reasons, reliability 

methods for operational programs often approximate test-retest reliability through other means. 

For example, Cronbach’s (1951) coefficient alpha is one of the most commonly reported metrics 

of reliability for educational assessments. Rather than administering a test over two occasions, as 

is done for test-retest reliability, coefficient alpha determines the average of all the possible split-

half reliability calculations for the assessment and represents the ratio of true score variance to 

observed score variance, effectively treating the halves as separate forms administered at the 

same time. 

Selection of a method for estimating the reliability of an assessment depends on several 

factors, including the design of the assessment, the scoring model used to provide results, and the 
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availability of data. The guidelines put forth by the Standards for Educational and Psychological 

Testing (Standards hereafter; American Educational Research Association [AERA] et al., 2014) 

specify a number of considerations for reporting reliability of assessment results. For the 

purposes of this paper, we focus on three specific standards: 

• Standard 2.2: “The evidence provided for the reliability/precision of the scores should be 

consistent with the domain of replications associated with the testing procedures, and 

with the intended interpretations for use of the test scores” (p. 42). 

• Standard 2.3: “For each total score, subscore, or combination of scores that is to be 

interpreted, estimates of relevant indices of reliability/precision should be reported” 

(p. 43). 

• Standard 2.5: “Reliability estimation procedures should be consistent with the structure of 

the test” (p. 43). 

Because classical test theory (CTT) and item response theory (IRT) models have 

dominated the field of educational measurement, methods for evaluating reliability aligned to 

these models have similarly dominated the reliability literature (Brennan, 2001; Haertel, 2006). 

While methods of obtaining traditional reliability estimates are well understood and documented, 

there is far less research on methods for calculating the reliability of assessment results derived 

from less commonly applied statistical models, namely, diagnostic classification models 

(DCMs). 

Diagnostic Classification Models 

DCMs, also known as cognitive diagnosis models (CDMs; e.g., Leighton & Gierl, 2007), 

are confirmatory latent class models that represent the relationship of observed item responses to 

a set of categorical latent variables (e.g., Bradshaw, 2016; Rupp et al., 2010). Whereas traditional 
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psychometric models (e.g., IRT) model a single, or occasionally multiple, continuous latent 

variables, DCMs model respondent mastery on a number of discrete latent variables (i.e., skills). 

Thus, a benefit of using DCMs for calibrating and scoring operational assessments is their ability 

to support instruction by providing fine-grained reporting at the individual skill level. 

To provide detailed profiles of respondent mastery of skills measured by the assessment, 

DCMs require the specification of an item-by-skill (also referred to as item-by-attribute) matrix 

known as the Q-matrix (Tatsuoka, 1983). Based on the collected item-response data, the model 

determines the overall probability of respondents being classified into each latent class. The 

latent classes for DCMs are typically binary mastery status (master or nonmaster). This base-rate 

probability of mastery (i.e., the structural parameter) is then related to respondents’ individual 

response data to determine the respondents’ posterior probability of mastery for each assessed 

skill. The posterior probability is on a scale of 0 to 1 and represents the certainty the respondent 

has mastered each skill. Values closer to the scale extremes of 0 or 1 indicate greater certainty in 

the classification; a value of 0 indicates the respondent has definitely not mastered the skill, and 

a value of 1 indicates the respondent definitely has mastered the skill. In contrast, values closer 

to .50 represent maximum uncertainty in the classification. A mastery probability of .50 indicates 

the model cannot distinguish whether, on the basis of the available response data, the respondent 

has mastered the skill; the respondent is just as likely a master as a nonmaster. Diagnostic 

assessment results are typically reported as the mastery probability values or as dichotomous 

mastery statuses when a threshold for demonstrating mastery is imposed (e.g., .80). The 

dichotomous mastery statuses can also be aggregated into an skill mastery profile for reporting 

results. 
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The diagnostic scoring approach is unique in that the probability of mastery provides an 

indication of error or, conversely, certainty, for each skill and examinee. However, it does not 

provide information about consistency of measurement for the skill or for the assessment as a 

whole. Furthermore, because assessment results are the collection of skill-mastery results, rather 

than a total raw or scale score, traditional approaches to reliability are not appropriate, and 

alternate methods must be considered for reporting the reliability of operational assessment 

results. 

Measuring the Reliability of Diagnostic Assessments 

Because DCMs have not been widely used in operational or applied settings (Ravand & 

Baghaei, 2020; Sessoms & Henson, 2018), there has been limited research examining how best 

to report the reliability of classifications from a DCM-based assessment. However, there has 

been recent theoretical research on reliability methods for DCMs (for a review, see Sinharay & 

Johnson, 2019). In general, this research has been divided into two segments, depending on how 

results for the assessment are intended to be reported. If results are reported as the probability of 

mastery for each skill, then reliability should be reported as the precision of the estimated 

probability (e.g., Johnson & Sinharay, 2020; Templin & Bradshaw, 2013). In contrast, when 

results are reported as a binary classification (i.e., master or nonmaster) at the skill level, 

reliability is conceptualized as classification consistency and classification accuracy. This 

classification-based reliability will be the focus of this paper. 

Classification accuracy is defined as the probability that an examinee receives a 

classification that is consistent with his or her true mastery status. Classification consistency is 

defined as the probability that an examinee receives the same classification across multiple 

administrations of an assessment (Cui et al., 2012). While classification-based reliability in 
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DCMs can be evaluated at multiple levels (e.g., skill level, profile level; Cui et al., 2012; Johnson 

& Sinharay, 2018; Wang et al., 2015), the definitions for classification accuracy and consistency 

are not altered by the level of analysis. Thus, the same statistical procedures can be used to 

estimate reliability in DCMs at each of these levels. 

Early research on reliability in DCMs was conducted by Cui et al. (2012). They defined 

the cognitive diagnostic classification accuracy index and the cognitive diagnostic classification 

consistency index classification accuracy at the profile level. These indices provide the marginal 

probability of classifying an examinee accurately and consistently, respectively, at the profile 

level (Cui et al., 2012). However, these indices do not allow for evaluating accuracy and 

consistency at the skill level. 

For assessments reporting results at the skill level, reliability evidence at the skill level 

should also be reported (e.g., Standard 2.3; Standard 2.5; Sinharay & Haberman, 2009). Wang et 

al. (2015) extended the work of Cui et al. (2012) by defining classification accuracy and 

consistency indices at the skill level. Wang et al. (2015) calculated skill-level classification 

accuracy and consistency as the proportion of examinees classified accurately and consistently 

within each skill’s mastery status (i.e., masters and nonmasters). 

While the classification accuracy and consistency indices defined by Wang et al. (2015) 

allow for calculating classification-based reliability at the skill level, Johnson and Sinharay 

(2018) noted these indices rely on the assumption that the posterior probabilities are constant 

across parallel forms of a test. Using a simple counterexample, Johnson and Sinharay 

demonstrated that this assumption is easily violated. They defined modified skill-level 

classification accuracy and consistency indices at the skill level using consistent estimators, and 

they provided interpretive guidelines for these new indices. Other commonly reported indices 
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that Johnson and Sinharay suggested calculating include Youden’s (1950) statistic, Goodman 

and Kruskal’s (1954) lambda, Cohen’s (1960) kappa, the tetrachoric correlation (Pearson, 1900), 

and sensitivity and specificity (Yerushalmy, 1947) to estimate reliability in DCMs. 

Limitations of Current Classification-Based Reliability 

The classification-based reliability indices defined by Cui et al. (2012), Wang et al. 

(2015), and Johnson and Sinharay (2018) can be calculated using data from a single 

administration, which acknowledges limitations pertaining to administering large-scale 

assessments multiple times. However, the existing classification-based reliability indices are 

limited to reporting reliability evidence at the skill and profile levels. This limitation may be 

problematic if results are aggregated and reported at a different level. For example, results may 

be reported as the total number of skills mastered or aggregated into an overall performance level 

(e.g., for state accountability systems) or pass/fail determinations (e.g., certification and 

licensure), yet the existing classification-based reliability indices do not support reporting 

reliability evidence at these levels. Thus, there is a need for methods to calculate classification-

based reliability that are flexible for reporting multiple levels of reporting to support evidence 

recommended by Standards 2.2, 2.3, and 2.5 (AERA et al., 2014). 

Simulation-Retest Reliability 

Roussos et al. (2007) explained how simulated data obtained from calibrated DCM 

parameters (according to real data) can be used to produce summary statistics for evaluating a 

model, including several types of reliability indices. Specifically, the proportion of times each 

examinee is classified correctly for each skill was also described as providing an estimate of the 

correspondence between the estimated skill classification in the observed and simulated data. 

Similarly, the proportion of times each examinee is classified to the same category (e.g., masters 



RELIABILITY FROM SIMULATED RETESTS 9 

 

 

or nonmasters) across two parallel tests was described as providing an estimate of test-retest 

consistency. 

Templin and Bradshaw (2013) conducted a research study using a hypothetical second 

test administration to compare reliability estimates from a DCM to those of an IRT model for the 

same set of data collected from a single, fixed-form assessment administered to approximately 

2,300 students. Rather than using a diagnostic assessment constructed with the purpose of 

reporting results at the skill level, this application retrofitted a DCM to existing large-scale 

assessment data designed to measure a single construct so that the assignment of items to skills 

was imposed post hoc. The researchers used posterior probabilities of mastery to calculate the 

probability of being assigned to each mastery profile and compared these probabilities to random 

draws from the theta distribution for the IRT-scored assessment. Reliability results comparing 

the mastery statuses obtained from the DCM were reported with a tetrachoric correlation for each 

skill in the model. While their main findings demonstrated that the DCM produced higher 

reliability estimates than those obtained from the IRT model for a test of the same length, they 

also demonstrated that hypothetical retest methods may be useful for evaluating reliability. 

To report reliability evidence at multiple levels, a simulation-retest methodology is one 

method for evaluating reliability of diagnostic assessment results. Conceptually, a second 

administration of an assessment can be simulated on the basis of the administered assessment. 

By simulating a second administration, scores from two assessments are available, providing a 

means for evaluating retest reliability in the traditional sense (i.e., consistency of scores across 

multiple administrations). The simulation-retest approach differs from other CTT methods that 

report an estimate of the correlation between total scores from two forms, administrations, or 

halves of a test. Instead, a simulation-retest approach reports the correspondence between the 
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estimated mastery statuses in the observed and simulated data, and the interpretation of the 

reliability results remains the same as for CTT methods. That is, reliability estimates are 

provided on a metric of 0 to 1, with values of 0 being perfectly unreliable and all variation 

attributed to measurement error, and values of 1 being perfectly reliable and all variation 

attributed to respondent differences on the construct measured by the assessment. 

Consistent with existing classification-based reliability procedures, the simulation-retest 

methodology can be used to estimate the classification accuracy and consistency between the 

observed and simulated data at the skill and profile levels. However, the simulation-retest 

methodology also allows for estimating reliability for other aggregated reporting levels. Using 

the number of skills mastered to illustrate, it is possible to compare, for example, overall 

performance level in the observed and simulated administrations, and the reliability indices can 

be calculated to compare the consistency of the performance level determination. Similarly, the 

simulation-retest methodology can be used to estimate reliability at other levels of reporting. 

Thompson et al. (2019) demonstrated how a simulation-retest method could be used to 

estimate the reliability of assessments scaled with DCMs at different levels of reporting. 

Thompson et al. applied the simulation-retest method to provide reliability evidence at multiple 

levels of reporting that are used for an operational, large-scale state assessment. The purpose of 

the current paper is to provide an in-depth description of the simulation-retest method for 

estimating reliability and compare the results from applying the simulation-retest method to 

those from other existing nonsimulation-based methods. Because existing nonsimulation-based 

methods cannot report reliability evidence at the all levels that results may be reported when 

mastery results are aggregated, the simulation-retest method offers a means for reporting 

reliability evidence and results at the same level. Consequently, it is important to compare the 
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reliability estimates from the simulation-retest and nonsimulation-based methods at the skill 

level to generally demonstrate the accuracy and consistency of the simulation-retest method. 

Calculating Reliability Estimates 

The general approach to the simulation-retest reliability method, as described by 

Thompson et al. (2019), is to simulate a second set of responses based on actual respondent 

performance and calibrated-model parameters, score real-test data and simulated-test data, and 

compare respondents’ estimated mastery statuses for the observed and simulated data. That is, 

once response data has been collected, calibrated, and scored, a second administration can be 

simulated using the known model parameters from the first (i.e., real) administration. In the 

context of using DCMs to calibrate and score the assessment, respondent performance is the set 

of mastery statuses for each skill. The threshold for mastery status must be specified before 

calculating reliability. 

When calculating skill-level classifications, a threshold is specified to distinguish masters 

and nonmasters, recognizing that values farther from .50 indicate greater certainty in the 

classification. In applications of this methodology, the threshold value may vary depending on 

the design of the assessment, respondent population, stakeholder feedback, or other factors. 

Applying the mastery threshold to the posterior probabilities of mastery obtained from 

the diagnostic scoring model results in a dichotomous mastery status for each skill measured by 

the assessment. The mastery status is one level of reporting results for diagnostic assessments 

and, therefore, one level at which reliability should be summarized. Because the scoring model 

produces mastery decisions, the term “results” is used instead of the term “scores” throughout 

this paper. 

The specific steps for a DCM-based simulation are as follows: 
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1. Sample respondent record: Sample with replacement a respondent record from the 

operational data set. The respondent’s mastery status or posterior probability of mastery 

from the operational scoring for each measured skill serves as the true value for the 

simulated respondent. 

2. Simulate second administration: For each item the respondent was administered, simulate 

a new response that is based on the model-calibrated parameters, conditional on the true 

mastery probability or status for the skill. 

3. Score simulated responses: Using the operational scoring method, assign mastery status 

by imposing a threshold for mastery on the posterior probability of mastery obtained 

from the model. 

4. Repeat: Repeat the steps for a predetermined number of simulated respondents. 

Step 1 draws respondent records from the operational data, and Step 2 simulates a second 

administration. This process ensures the simulation-retest method replicates results from real 

examinees using the actual set of items each examinee has taken, which means that the two 

administrations are perfectly parallel. In Step 3, the operational scoring procedure is applied to 

both the observed and simulated response data to calculate the posterior probability of mastery. 

To calculate reliability indices, the estimated skill-mastery statuses for the observed and 

simulated data are compared across all replications determined in Step 4. Specifically, for each 

skill, reliability results are calculated using the 2×2 contingency table of estimated mastery 

statuses from the observed and simulated data, as shown in Table 1. We focus on skill-level 

reliability estimates in this paper because the nonsimulation-based methods are limited to 

reporting reliability evidence at the skill and profile levels; however, the benefit of the 

simulation-retest method is that the same procedure can be used for other levels of reporting. For 
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example, we could calculate a performance level for both the observed and simulated data using 

an assessment’s operational rules. If there were four performance levels, we would then create a 

4×4 contingency table similar to Table 1, showing the observed and simulated performance 

levels. 

Table 1 

2×2 Contingency Table of Estimated Mastery in the Observed and Simulated Administrations 

Observed mastery status Simulated mastery status 

0 1 

0 𝑛00 𝑛01 

1 𝑛10 𝑛11 

Note. 0 = skill nonmastery; 1 = skill mastery. 

In this study, the performance of the simulation-retest reliability method is evaluated by 

comparing reliability estimates from the simulation-retest method with multiple nonsimulation-

based reliability indices across a variety of simulated conditions. In addition to evaluating the 

simulation-retest reliability method through a simulation study, we also applied the simulation-

retest method in an empirical data analysis of the grammar subtest of the Examination for the 

Certificate of Proficiency in English (ECPE; Templin & Hoffman, 2013), which was previously 

used by Sinharay and Johnson (2019) to demonstrate the application of a variety of 

classification-based reliability indices for DCMs. 

Simulation Study 

We conducted a simulation study to evaluate the accuracy of the reliability estimates 

from the simulation-retest method described above. In this study, we manipulated the number of 

assessed skills (three, four, five), the minimum number of items measuring each skill (three, 

four, five), the base rate of mastery (.10, .50, .90), the correlation between the assessed skills 
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(0.0, .35, .70), and item discrimination (low, moderate, high). This simulation used a full 

factorial design, resulting in 243 total conditions with 100 repetitions per condition. 

Data Simulation 

The simulation study is modeled on Johnson and Sinharay’s (2018) evaluation of skill-

level classification reliability indices. In the simulation for this study, each simulated assessment 

measured three, four, or five skills. The number of items included in each assessment (I) is the 

product of the number of assessed skills (A) and the minimum number of items measuring each 

skill (J; i.e., 𝐼 = 𝐴 ∗ 𝐽). The Q-matrix (Tatsuoka, 1983) is specified so that the first six items 

form an identity matrix, and each remaining item has a 50% chance of assessing a second skill in 

addition to the identity matrix. Consistent with Johnson and Sinharay (2018), the items could not 

measure more than two skills. Table 2 presents an example Q-matrix for an assessment 

measuring three skills with a minimum of three items per skill. 

Table 2 

Example Q-Matrix 

Item Skill 1 Skill 2 Skill 3 

1 1 0 0 

2 0 1 0 

3 0 0 1 

4 1 0 0 

5 0 1 0 

6 0 0 1 

7 1 0 0 

8 0 1 1 

9 0 1 1 

 

The base rate of mastery and the distributions for the item parameters were also simulated 

according to the approach used by Johnson and Sinharay (2018). The base rate of mastery for the 

first assessed skill was determined by the simulation condition, where 10%, 50%, or 90% of 
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examinees mastered the first skill. The base rates of mastery for the remaining skills were 

determined by drawing a random number from a uniform distribution ranging from 0.2 to 0.8. 

The generating model for this simulation was a log-linear cognitive diagnosis model 

(LCDM; Henson et al., 2009), meaning the item parameters include item intercepts, main effects, 

and interaction effects. The item intercepts, which correspond to the probability of a nonmaster 

correctly responding to the item, were drawn from a uniform distribution ranging from 0.00 to 

0.35, following the approach used by Johnson and Sinharay (2018). The item main effects, which 

correspond to the log odds increase in the probability for a master of the skill correctly 

responding to the item, were drawn from a truncated normal distribution with a mean of 1.0, 1.5, 

or 2.0 (representing low, moderate, and high discrimination, respectively) and a standard 

deviation of .17, where the values were constrained to be positive, using Johnson and Sinharay’s 

(2018) approach. The item interaction effects, which correspond to the log odds increase in the 

probability for a master of two skills correctly responding to the item, were also drawn from a 

truncated normal distribution with a mean of 1.0, 1.5, or 2.0 and a standard deviation of .17, but 

the values were constrained to be greater than negative one times the smallest item main effect 

(i.e., -1 × min[main effects]) to meet the monotonicity constraints of the LCDM (Henson et al., 

2009). Like the other item parameters, the distribution for the item-interaction-effect parameters 

followed the approach used by Johnson and Sinharay (2018). 

In this study, 2,000 respondents were simulated for each generated data set. For each 

generated data set, we fit an LCDM and a deterministic-input, noisy-and-gate (DINA; de la Torre 

& Douglas, 2004; Junker & Sijtsma, 2001) model to each of the simulated data sets. Because the 

generating model for each data set is an LCDM, it is expected that the LCDM should 

demonstrate better fit than the DINA model. It is expected that these differences in model fit 
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should have implications for classification-based reliability. Specifically, the DINA model is 

expected to demonstrate lower reliability because model misfit is present. 

The generated data sets and the estimated model parameters were then used to create the 

simulated retests. When calculating the simulation-retest reliability estimates, 100,000 

respondents were drawn with replacement and simulated for the retest data. A threshold of .50 

was used in this simulation study to determine skill mastery, as this is a commonly used 

threshold in the literature (e.g., Bradshaw & Levy, 2019; Templin & Bradshaw, 2013). However, 

any threshold can be used in an operational setting. The simulation-retest classification 

consistency was then calculated as the proportion of respondent mastery classifications for each 

skill that matched the respondent’s mastery status estimated from the original generated data set 

(i.e., how consistent the classifications were across the resampled respondents’ simulated 

retests). Similarly, the simulation-retest classification accuracy for each skill was calculated as 

the average probability associated with each mastery classification across all simulated retests for 

the resampled respondents. 

Method Comparisons 

The simulation-retest reliability estimates for the LCDM were then compared to 

nonsimulation-based methods for estimating the reliability of DCMs. Specifically, the 

simulation-retest classification consistency was compared to the �̂�𝑐𝑘 classification consistency 

measure defined by Johnson and Sinharay (2018; their equation 27). The simulation-retest 

classification accuracy was compared to the �̂�𝑘 measure defined by Wang et al. (2015; their 

equation 11). This measure was denoted as �̂�𝑎𝑘 by Johnson and Sinharay (2018; their equation 

9). 
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Because the simulated retests use the estimated model parameters to simulate item 

responses for the resampled respondents, it is implied that the estimated parameters are correct. 

Thus, it is possible that the simulation-retest method may produce biased estimates of reliability 

if there is model misfit. Therefore, it is important to examine the impact of model misfit on 

reliability estimates derived from the simulation-retest method. To evaluate the impact of model 

misfit, we simulated retests using the true data-generating parameters, the parameters estimated 

by the LCDM, and the parameters estimated by the DINA model. The LCDM was the data-

generating model; therefore, the estimated LCDM parameters should be similar to the true 

parameters with some sampling variability. In contrast, the DINA model is a more restrictive 

model and therefore represents a model that does not truly fit the data and may therefore 

potentially bias the reliability estimates. Estimating both the LCDM and the DINA models 

allowed us to evaluate how reliability measures derived from simulated retests with parameters 

that either fit (i.e., the LCDM parameters) or did not fit (i.e., the DINA parameters) compared 

with the reliability measures derived from the true data-generating parameters. For all 

comparisons, we used the mean absolute difference to evaluate discrepancies between the 

reliability measures. 

Simulation Study Results 

There were 243 conditions with 100 repetitions per condition in this simulation. The 

models and reliability estimates were estimated for 91% of repetitions using the true data-

generating parameters as well as the estimated parameters from the LCDM and DINA models. 

The 9% of replications in which reliability estimates could not be estimated were evenly 

distributed across conditions; they were not the result of a limitation of the reliability method, but 

rather of the failure to converge of one or more of the estimated models. For simplicity, we 
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report the estimated reliability for Skill 1 rather than for all skills that were included in each 

condition. 

Classification Consistency 

 Figure 1 shows the average simulation-retest classification consistency and 

nonsimulation-based classification consistency (�̂�𝒄𝒌; Johnson & Sinharay, 2018) for the first 

skill in each condition. Overall, the estimates from the simulation-retest and nonsimulation-based 

methods are highly consistent, with an average absolute difference of only 0.0002. The similarity 

between the two measures of classification consistency was stable across all simulation 

conditions, indicating that the simulation-retest measure of classification consistency provides 

reliability estimates comparable to nonsimulation-based measures across a variety of assessment 

conditions. 
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Figure 1 

Comparison of Classification Consistency Across All Simulation Conditions 

 

Note. Dashed line represents perfect agreement. 

Classification Accuracy 

When comparing the simulation-retest reliability estimates from the LCDM model with 

the nonsimulation-based reliability accuracy estimates, the classification accuracy estimates were 

also highly similar. Figure 2 shows a scatterplot with the average simulation-retest classification 

accuracy estimate for the first skill for each condition on the x-axis and the average 

nonsimulation-based classification accuracy estimate (�̂�𝑘; Wang et al., 2015) for each condition 

on the y-axis. In the scatterplot, the dashed line is the line of perfect agreement. The simulation-

retest and nonsimulation-based reliability estimates are close to the line of perfect agreement, 

with an average absolute difference of 0.0001 across conditions. Thus, as with the classification 
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consistency, when the estimated model matches the generating model, simulation and 

nonsimulation-based methods give nearly identical estimates of skill reliability. 

Figure 2 

Comparison of Classification Accuracy Across All Simulation Conditions 

 

Note. Dashed line represents perfect agreement. 

 

Model Fit 

 Figure 3 shows the average simulation-retest classification consistency for the first skill 

across each of the manipulated factors in the study and each set of item parameters (i.e., true, 

LCDM, and DINA). As expected, when using parameters from the DINA model that do not fit 

the true structure of the data, the reliability estimates are slightly lower than the estimates derived 

when using the true data-generating parameters or the LCDM estimates. The relatively small 
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effect of misfit is likely an artifact of the Q-matrix generation. In the Q-matrix, each skill was 

always measured by two items in isolation (i.e., single-skill items) and one to three items that 

may or may not have measured a second skill (e.g., Table 2). For single-skill items, the LCDM 

and DINA models are equivalent (Rupp et al., 2010). Because the models are equivalent for 

single-skill items, misfit would be present only for the comparatively few numbers of items that 

measured multiple skills. As such, this study included only small to moderate levels of misfit, 

depending on how many items were simulated to measure multiple skills. Thus, it is likely that 

more items measuring multiple skills or items measuring more than two skills would increase the 

observed differences for the DINA model, as there would be a greater difference between the 

DINA model and the data-generating model. 

 In contrast to the results from the DINA model, the reliability estimates when using 

parameters from the LCDM that do fit the true structure of the data are slightly higher than the 

estimates derived when using the true data-generating parameters. This observation is especially 

true at the highest value of each of the study factors. The high values of these factors are 

typically associated with high quality assessments (e.g., highly discriminating items, longer test 

length, etc.). Across all simulation conditions, the average absolute difference between the 

simulation-retest classification consistency derived from the true and LCDM parameters was 

0.0099, compared to a difference of 0.0168 between the true and DINA parameters. 
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Figure 3 

Average Simulation-Retest Classification Consistency Across Study Factors, by Model 

 

 Classification accuracy shows a similar pattern in Figure 4. Again, we see that estimates 

of classification accuracy are generally slightly lower when the parameters come from a model 

that does not fit the data (i.e., the DINA model) and that estimates of classification accuracy are 

generally slightly higher when the parameters come from a model that does fit the data (i.e., the 
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LCDM). The differences are again most pronounced at the highest levels of each factor, but the 

differences are smaller overall than what we observed for the classification consistency. Across 

all simulation conditions, the average absolute difference between the true and LCDM estimates 

of classification accuracy was 0.0071, compared to an average absolute difference of 0.0110 

between the true and DINA estimates (a difference of 0.004, compared to a difference of 0.007 

for classification consistency). 

Figure 4 

Average Simulation-Retest Classification Accuracy Across Study Factors, by Model 
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 Across all conditions, the estimates of classification accuracy were consistently higher 

than the estimates of classification consistency. Additionally, both the simulation-retest 

classification consistency and classification accuracy show patterns that are expected for a 

reliability metric. For example, both consistency and accuracy tend to increase as the number of 

items increases (top left of Figure 3 and Figure 4), as the items better differentiate between 

mastery classes (middle left of Figure 3 and Figure 4) and the correlation between skills 

increases (bottom right of Figure 3 and Figure 4). 

Empirical Data Analysis 

To evaluate the performance of the simulation-retest reliability method in a real-data 

setting, we applied the method to the data set for the grammar subtest of the ECPE (Templin & 

Hoffman, 2013), as the nonsimulation-based reliability estimates have been reported for the 

ECPE (Sinharay & Johnson, 2019). The ECPE is an internationally administered assessment of 

the grammatical rules in English at the Proficient level of the Common European Framework of 

Reference for Languages. More specifically, the ECPE assesses morphosyntactic rules, cohesive 

rules, and lexical rules. The ECPE is intended for secondary-school students and adults. The 

ECPE data set is available from the CDM package in R (Robitzsch et al., 2020), and it has 

previously been used to demonstrate the application of the nonsimulation-based classification-

based reliability estimates for DCMs (Sinharay & Johnson, 2019). The data for the grammar 

subtest of the ECPE include 2,922 examinees and 28 items, with 13 items measuring the 

morphosyntactic rules, six items measuring cohesive rules, and 18 items measuring the lexical 

rules. The Q-matrix and the estimated structural and item parameters for the grammar subtest of 

the ECPE are available in Templin and Hoffman (2013). 



RELIABILITY FROM SIMULATED RETESTS 25 

 

 

In this empirical data analysis, we fit an LCDM to the ECPE data, and then we simulated 

100 retests for each examinee using the estimated parameters from the LCDM. Given the many 

applications of this LCDM to this data set (e.g., Chen et al., 2018; Liu & Johnson, 2019; Templin 

& Bradshaw, 2014; Templin & Hoffman, 2013), we expect the parameter estimates to provide 

good model fit. We then estimated the simulation-retest estimates of classification consistency 

and accuracy as described previously and compared the simulation-retest estimates to the 

estimates of �̂�𝑐𝑘 and �̂�𝑘 (denoted as �̂�𝑎𝑘) by Johnson and Sinharay (2018; their Table 6 and Table 

7). The �̂�𝑐𝑘 and �̂�𝑘 are the previously described classification consistency and accuracy estimates 

defined by Johnson and Sinharay (2018) and Wang et al. (2015), respectively. 

Empirical Data-Analysis Results 

The reliability estimates from both the simulation-retest and nonsimulation-based 

methods are presented in Table 3. The simulation-retest reliability estimates were similar to the 

nonsimulation-based reliability estimates reported by Johnson and Sinharay (2018). The 

simulation-retest classification accuracy estimates were within .01 of the nonsimulation-based 

classification accuracy estimates. This high degree of similarity is expected, given the high 

degree of consistency between these measures that was observed in the simulation study, and 

indicates that the similarity between the two methods persists for real data. However, it is also 

worth noting that the simulation-retest reliability estimates were equal to or marginally larger 

than the nonsimulation-based reliability estimates. This marginal inflation, although never 

greater than .01, may indicate a slight tendency for the simulation-retest method to overestimate 

reliability. 
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Table 3 

Comparison of Simulation-Retest and Nonsimulation-Based Skill-Level Reliability Estimates for 

the Data From the Examination for the Certificate of Proficiency in English 

Measure �̂�𝑐𝑘 Simulation-retest 

consistency 
�̂�𝑎𝑘 Simulation-retest 

accuracy 

Skill 1 .83 .85 .90 .92 

Skill 2 .81 .82 .86 .86 

Skill 3 .86 .87 .92 .93 

 

Discussion 

 In this study, we compared the performance of a simulation-retest reliability method to 

nonsimulation-based methods that have previously been described in the literature. Although the 

simulated-retests method has been described and implemented in previous research (e.g., 

Thompson et al., 2019), additional research was needed to fully evaluate the estimates derived 

from such a method. 

 The findings from this paper demonstrate that simulated retests provide high-fidelity 

measures of classification consistency and classification accuracy for diagnostic assessments. 

When comparing the scores from simulated retests to the scores from an original data set, the 

simulated-retests method provided estimates of classification consistency and accuracy that were 

highly consistent with more traditional, nonsimulation-based methods. This similarity in the 

reliability estimates was true across all conditions evaluated in this study. Additionally, we 

demonstrated that the simulated-retest method demonstrates the expected properties of a 

reliability metric, such as increased reliability with longer assessments, more-discriminating 

items, and association between the measured constructs (de la Torre & Patz, 2005; DeVellis, 

2006). Finally, an empirical analysis of ECPE data further demonstrated that the simulated-
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retests method produced reliability estimates similar to those of the nonsimulation-based 

reliability methods. 

 Best practice in the literature indicates reliability evidence should be presented at the 

same level at which the results are reported (e.g., Standards 2.2, 2.3, and 2.5, AERA et al., 2014; 

Sinharay & Haberman, 2009). For DCMs, when results are reported at the skill level, the 

reliability evidence should also be reported at the skill level. This guiding principle has 

motivated much of the existing research on reliability in DCMs (e.g., Cui et al., 2012; Johnson & 

Sinharay, 2018; Wang et al., 2015), where classification-based reliability at the skill and profile 

levels has been emphasized. 

 However, a limitation of existing classification-based reliability approaches is that they 

do not readily scale to other levels of reporting. For example, in addition to reporting the skill-

level results, a testing program may also report results as the total number of skills mastered, a 

performance level for state accountability systems, or a pass/fail decision for certification and 

licensure. Consequently, it is important that reliability evidence can be reported at these levels. 

 This paper expands on previous work (e.g., Roussos et al., 2007; Thompson et al., 2019) 

to examine how simulation-retest estimates of classification accuracy and consistency compare 

to other methods. Because findings were generally consistent with other methods, we argue that 

simulated retests may be preferred because they can estimate reliability at multiple levels of 

reporting, not just the skill level (Thompson et al., 2019). As operational programs continue to 

adopt DCM-based assessments, the capacity to report results and provide reliability evidence at 

levels beyond just the skill level is important for meeting the needs of stakeholders. 

 We recognize that the simulated-retests method may not be necessary or preferable in all 

contexts. The process of simulating retests, calculating results for each retest, and summarizing 
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the results with an appropriate agreement metric requires more time and computing than other 

reliability metrics for DCMs that provide equally useful information. However, when an 

assessment reports results at an aggregated level (e.g., an overall performance level), the 

simulated-retests method provides a consistent approach that can be used to report reliability for 

all levels of reported results. Thus, this method is an important tool for operational programs or 

accountability assessments that aggregate respondent-mastery results in addition to reporting 

individual skill-mastery statuses. 

 Because the simulated retests use the estimated model parameters to simulate the retests, 

model fit is a key component of the method. The results of the current study demonstrated that 

even the small to moderate amounts of misfit introduced in this study by using the DINA model 

may introduce bias in the reliability estimates. Therefore, practitioners implementing this method 

should carefully evaluate the fit of their model before using simulated retests to estimate 

reliability. Future work may consider the impact of different types and amounts of model misfit 

on the reliability estimates produced by simulated retests. 

Conclusions 

This study has positive implications for operational testing programs administering 

assessments that are scaled using DCMs. The simulation-retest reliability method allows for 

reliability evidence to be reported at multiple levels, which can support programs reporting both 

skill-mastery profiles and overall performance-level results. The current study demonstrates that 

the simulated-retests method generates reliability estimates that are consistent with 

nonsimulation-based methods and with the true reliability. These findings indicate that the 

simulation-retest reliability method produces accurate and consistent reliability estimates under a 

variety conditions. These findings are promising given the usefulness of the simulation-retest 



RELIABILITY FROM SIMULATED RETESTS 29 

 

 

reliability method to operational testing programs in reporting reliability evidence to support the 

use of their assessments. 
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