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Executive Summary
For assessments that are administered annually, it is common to compare performance across
administration years. However, when there are changes to the student population over time, it can be
difficult to make comparisons. Regardless of whether population differences are due to an acute event
(e.g., the COVID-19 pandemic), long-term systematic change (e.g., compliance with the Every Student
Succeeds Act 1% threshold for alternate assessments based on alternate achievement standards
[AA-AAS] participation), or random fluctuations, changes in the population need to be accounted for in
order to evaluate changes in performance from year to year. Further, after accounting for changes in the
population, any observed differences in performance must be evaluated to determine whether these
differences are aberrant or consistent with normal year-to-year fluctuations.

This report outlines an approach for evaluating differences in performance distributions across years.
Specifically, this report describes the following methods:

• the use of a propensity score model to estimate the probability that each student would participate in
an administration year based on demographic characteristics and survey responses

• a matching algorithm based on random resampling that accounts for population differences while
preserving the original sample size of both administration years

• a process for flagging aberrant changes based on the effect size of the change
• a procedure for visually reporting results that simultaneously communicates both the magnitude and
importance (effect size) of each change

Findings illustrate the utility of the proposed methods for making cross-year comparisons. Specifically, the
findings demonstrate the accuracy of the propensity score model and the effectiveness of the matching
algorithm for minimizing differences in the population across administration years. Additionally, the effect
size visualization method allows readers to readily identify which changes are within expected limits and
which changes may need further investigation.

Page 1



Evaluating Performance Level Changes
Dynamic Learning Maps
Technical Report #21-01

1. Background and Purpose of the Report
Dynamic Learning Maps® (DLM®) assessments report student achievement as an overall performance
level for each subject, which is used for state accountability systems. There are four performance levels
used to describe student achievement: Emerging, Approaching the Target, At Target, and Advanced.

When administering DLM assessments in English language arts (ELA) and mathematics, states choose
between the Instructionally Embedded and Year-End models. In the Instructionally Embedded model,
testlet are administered in both a fall and spring window, and teachers choose which subset of Essential
Elements to assess and which linkage level is selected for each Essential Element. In the Year-End model,
only assessments from the spring assessment window are included for summative scoring, and both the
Essential Elements and linkage levels system-assigned. All states participating in science follow a single
administration model that resembles the Year-End ELA and mathematics model, regardless of which
model is selected for ELA and mathematics.

After the close of each administration year, DLM staff summarize student performance level distributions
within each assessment model (Instructionally Embedded and Year-End), grade, and subject (ELA,
mathematics, and science). In isolation, these numbers can be difficult to interpret. To add context to the
raw percentages of students who achieved at each performance level, DLM staff also report the change in
each performance level from the prior year. This additional context can help state partners in interpreting
the results from a given year.

However, the change in performance level distributions can be misleading when there has been change to
the student population. Accounting for changes to the student population when making performance
comparisons across years has become increasingly important in the aftermath of the COVID-19 pandemic.
For example, the COVID-19 pandemic impacted whether and how students receive instruction as well as
whether students are able to participate in assessments (Cui, 2020). This issue of population changes
across years is not unique to evaluating COVID-19 related disruptions. There has been a systemic change
to the population of students taking alternate assessments based on alternate achievement standards
(AA-AAS) as states comply with the 1% participation threshold outlined in the Every Student Succeeds Act
(ESSA, 2015). In the general education setting, the student population has changed over the last several
years as a result of the assessment “opt-out movement,” where sometimes large groups of students
decide to opt-out and not complete any assessments (Bennett, 2016; Marland et al., 2019). When the
population of students completing an assessment changes, it is important that the population is balanced
across administration years to ensure that the comparison of performance level distributions is not simply
reflecting those changes to the population.

In this report, we describe a method to account for population changes that can be applied when there
have been acute disruptions, as well as long-term systematic efforts to change the student population. The
method is based propensity score matching and can be used to estimate changes in performance level
distributions across years, identify aberrant changes, and present the findings visually. Each of these
features of the method are described in turn. Throughout the report we use the 2017–2018 and
2018–2019 administration of the DLM assessments as an illustrative example. That is, we estimate the
change in the performance level distributions between the 2017–2018 and 2018–2019 administration
years. Although we focus on the application of the proposed methods to DLM assessments,
psychometricians in other assessment programs can use this report as a guide for building their own
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models to evaluate year-to-year differences in performance levels.

2. Estimate Change in Performance Level Distributions
To make accurate comparisons of the performance level distributions for a grade and subject across years,
we consider whether the samples from the two years are consistent. In other words, we want to be sure
that any changes we observe in the distributions from Year X − 1 to Year X are due to actual changes in
performance rather than changes to the student population. As an example, if the highest performing
students exited from the DLM assessment as states complied with the ESSA 1% threshold, the overall
distribution may look like performance declined. However, this would most likely be due to a change in the
population, rather than an actual decline in performance. Therefore, it is important to balance the samples
across years to make accurate comparisons.

To balance the samples, we employ a propensity score model. Propensity scores represent the probability
of an individual being assigned to a group, conditional on baseline characteristics (Austin, 2011). For this
analysis, the group assignment is the assessment administration year. That is, given a priori student
characteristics, can we predict which year the student was assessed? If there are significant changes to the
student population across years, then we should be able to make more accurate predictions of which year
a student was assessed in than if the populations are consistent across years. Conversely, if the student
population is perfectly stable across years, our predictions should not be any more accurate than chance.

After considering several methods for estimating the propensity scores, we recommend implementing a
random forest model (Wright & Ziegler, 2017), as this method shows the best performance for predicting
administration year from student baseline characteristics (see Appendix A for details on the model
selection process).

Random forests are a type of decision trees, which are logic-based algorithms where one or more predictor
variables are added to each layer of the tree to split the data. Specifically, a random forest model is
comprised of a multitude of trees that each contribute to the model-assigned output for each data point
(Breiman, 2001; Kotsiantis, 2013). The trees in random forest models can be classification trees (i.e.,
decision trees), regression trees (i.e., classification and regression trees), or survival trees (Wright &
Ziegler, 2017), with classification and regression trees (CARTs) being the most applicable for calculating
propensity scores. The key difference between CARTs and decision trees is that CARTs produce
continuous scale output, while decision trees produce nominal scale classification output (XGBoost
Developers, 2020). Growth and pruning phases are used in constructing trees. The growth phase entails
splitting nodes until all data points are classified perfectly or until the number of data points at each node is
less than the minimum number required for adding another layer to the tree (i.e., a stopping criterion). The
pruning phase entails simplifying the lower layers of the tree to reduce the risk of the tree overfitting the
data, particularly if a stopping criterion was not utilized during the growth phase. The performance of
individual trees is dependent on the order that the predictor variables were added to the tree; hence,
random forests incorporate many trees to reduce the impact of the order that the predictor variables were
added to each tree, and this typically leads to a drastic increase in the performance of a random forest
compared to an individual tree (Breiman, 2001; Kubat, 2017).
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2.1. Propensity Score Model Estimation
For each assessment model (i.e., Instructionally Embedded or Year-End), grade, and subject, a random
forest is estimated, predicting administration year from a set of demographic variables from enrollment files
and responses to the First Contact survey shown in Table 1. The selected demographic variables are
those that are reported annually in the DLM Technical Manual (i.e., gender, race, Hispanic ethnicity,
English learning [EL] status), and those from the First Contact survey that could show important
differences across years (i.e., primary disability, computer use, educational placement, primary language).
Additionally, responses to the First Contact survey are used to calculate subject-specific and
communication complexity bands for each student. Complexity bands are used to recommend linkage
levels for Instructionally Embedded ELA and mathematics assessments and assign the first linkage level
for science and Year-End ELA and mathematics assessments. For more information on the contents and
use of the First Contact survey, see Nash et al. (2016).
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Table 1

Variables Included in the Propensity Score Models

Predictor Description

Gender Student’s reported gender

Race Student’s reported race

Hispanic ethnicity Student’s recognition of their Hispanic ethnicity

Primary disability Student’s reported disability category

English learning (EL) participation Student’s eligibility or participation in EL services

Computer use Student’s primary use of a computer during instruction

Educational placement Student’s educational placement (e.g., regular class, resource
room, separate class, etc.)

Primary language Is English the student’s primary language (Yes or No)

Subject-specific complexity band Student’s subject complexity band, based on domain-specific
questions on the First Contact survey (i.e., ELA, mathematics, and
science)

Writing complexity band* Student’s writing complexity band, based on responses to the First
Contact survey

Expressive communication band Student’s expressive communication band, based on responses to
the First Contact survey

Receptive communication score Student’s sum score of receptive communication items on the First
Contact survey

* Only included for English language arts models.

The random forest model also includes hyperparameters than cannot be estimated directly from the data.
These include the number of predictors that are randomly sampled at each split when creating individual
trees and the minimum number of data points in a node that are required for the node to split further. To
select hyperparameters for the final models, a nested resampling approach is used, as illustrated in Figure
1.
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Figure 1

The Nested Resampling Approach

The full data for a model, grade, and subject is initially split into a training and a testing set. This is the
Level 1 split. For the initial split, 75% of the data is randomly selected for the training set, and the
remaining 25% is reserved for the testing set. The training set is then resampled using v-fold (also called
k-fold) cross validation (de Rooij & Weeda, 2020; Simon, 2007). Specifically, 10 folds are created. This
means that the training set is partitioned into 10 analysis and assessment sets.

For each split, model performance is evaluated using a receiver operating characteristic (ROC) curve
(Flach et al., 2011; Tharwat, 2020). ROC curves plot the true positive rate of a classifier (i.e., sensitivity)
against the false positive rate (i.e., 1 - specificity). ROC curves that fall directly on the diagonal represent
prediction equal to random guessing. ROC curves that are above the diagonal represent increased
predictive accuracy, with ROC curves that reach the top left corner representing perfect predictions. We
can quantify the performance of each model by calculating the total area under the ROC curve. An area of
1.0 indicates perfect prediction (i.e., the curve goes all the way up to the top left corner), and a value of .5
indicates chance guessing (i.e., the curve lies directly on the diagonal).

Given these data splits and this performance metric, model estimation for each assessment model, grade,
and subject proceeded using the following process:

1. A model was estimated for each set of candidate hyperparameters for the random forest on each of
the 10 analysis sets.

2. Model performance was evaluated by using the fitted model to predict the assessment sets and
calculating the area under the ROC curve.

3. Optimal hyperparameters for random forest models were selected based on which
hyperparameter(s) maximized the area under the ROC curve.

4. The selected hyperparameters were used to fit a final random forest to the complete set of training
data. These models were then used to predict the test set.
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Figure 2 shows the ROC curves for each model, grade, and subject when comparing the 2017–2018
administration to 2018–2019. In general, the random forest model predicts slightly better than chance, with
ROC curves slightly above the diagonal. This is also reflected in Table 2, which reports the area under
each of the ROC curves. The area under each ROC curve ranges from .45 to .87, with a median of .54.
This indicates that the majority models showed better than chance accuracy in predicting administration
year, but also that none of the models had notably high prediction accuracy.

Figure 2

ROC Curves for the Implemented Propensity Score Models
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Ideally, the student population would be perfectly stable across years, and our propensity score model
would not be able predict administration year any better than chance. We know from feedback from state
partners that this is not the case. For example, many states participating in the DLM assessments reported
that the student population did have changes between 2017–2018 and 2018–2019 as a result of ESSA
compliance. Thus, it is expected and a positive finding that the propensity score model is able to predict
better than chance. This indicates that the model is able to detect small differences in the population. In
summary, the ROC curves indicate that the samples are largely consistent, as the predictive accuracy is
not much larger than chance, but that there are small differences in the samples that should be accounted
for when making comparisons.

Table 2

Area Under the ROC Curve, by Assessment Model, Grade, and Subject

Grade or course English language
arts

Mathematics Science

Instructionally Embedded
3 .535 .542 —†

4 .578 .562 —†

5 .539 .575 —†

6 .567 .590 —†

7 .568 .551 —†

8 .589 .554 —†

9 .617 .611 —†

10 —* .598 —†

11 .566 .541 —†

Year-End
3 .529 .520 .778
4 .515 .517 .570
5 .526 .529 .534
6 .516 .539 .719
7 .526 .526 .634
8 .534 .525 .524
9 .693 .668 .530
10 .840 .867 —‡

11 .516 .536 —‡

Biology — — .449
* Instructionally embedded ELA assessments are grade banded for grades 9–10 and 11–12.
† All science assessments follow a year-end assessment model.
‡ Science assessments are grade banded for grades 9–12.
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2.2. Propensity Score Matching
Once the random forest model has been trained, we can predict which administration year a student
belongs to by their baseline characteristics. This results in a probability that each student would have been
assessed in each administration year. These probabilities can then be used to balance the samples across
years. The goal of these analyses is to determine the amount of change in the performance levels
distribution in Year X compared to Year X − 1. Therefore, we must first ask what the performance level
distributions in Year X − 1 would be if the sample in Year X − 1 looked like the sample in Year X. That is, we
want to examine what the performance level distributions in Year X − 1 would have looked like if all factors
related to the educational and assessment experience of students were the same, but the population of
students more closely resembled the student population for Year X. To do this, we resample with
replacement for the Year X − 1 data, weighted by the probability that the student belongs to the Year X
sample. Thus, students that more closely resemble the Year X sample are more likely to be selected,
meaning that the resampled data should approximate the characteristics of the Year X data.

This approach to balancing the samples was chosen for two main reasons. First, for reporting purposes, it
is desirable for raw Year X performance level distributions to match the distributions used for the
year-to-year comparisons, since the raw distributions and year-to-year changes are reported together. This
is why we only resample the Year X − 1 data. The Year X data remains as-is to maintain consistency across
the two analyses. Second, this method preserves the original sample size from each administration year.
This is important because the sample size influences the amount of uncertainty around the percentage of
students at each performance level. Traditional propensity score matching algorithms attempt to create a
1-to-1 match between the two samples (Caliendo & Kopeinig, 2008; Powell et al., 2020). However, for this
particular analysis, increasing or decreasing the sample size may artificially decrease or increase the
uncertainty of our estimated performance level distributions. Rather than matching individual students, we
are interested in matching overall distributions of demographic variables. Thus, we adopt our own
pseudo-matching algorithm.

Table 3, Table 4, and Table 5 show the makeup of the matched samples by demographic, First Contact
survey, and complexity band variables, respectively, when the matching algorithm is applied to the
2017–2018 and 2018–2019 data. For each variable, the percentage of students in each category is
reported for the raw 2017–2018 data and the matched 2017–2018 data created with the resampling
process. The tables also include differences between the percentage that was observed in 2018–2019 and
each of the raw and adjusted percentages from 2017–2018. If the propensity score model and the
matching algorithm are functioning as expected, the difference between 2018–2019 and the adjusted
sample should be smaller in magnitude than the difference between 2018–2019 and the raw sample from
2017–2018. That is, the adjusted sample should look more similar to 2018–2019 than the original
2017–2018 sample.
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Table 3

Distribution of Demographic Variables in the Propensity Score Models

Variable 2017–
2018 (%)

raw

2017–
2018 (%)
adjusted

2018–
2019 (%)

Raw
difference

Adjusted
difference

Gender
Male 67.1 67.1 66.9 −0.2 −0.2
Female 32.9 32.9 33.1 0.2 0.2

Race
White 60.6 61.1 60.2 −0.4 −0.8
African American 21.9 21.9 21.6 −0.2 −0.2
Two or more races 8.9 8.7 10.1 1.1 1.4
Asian 5.1 5.0 4.9 −0.2 −0.1
American Indian 2.8 2.7 2.5 −0.3 −0.2
Native Hawaiian or Pacific Islander 0.5 0.4 0.5 0.0 0.0
Alaska Native 0.3 0.3 0.2 −0.1 −0.1

Hispanic ethnicity
Non-Hispanic 78.8 79.4 79.5 0.7 0.2
Hispanic 21.2 20.6 20.5 −0.7 −0.2

Primary disability
Autism 27.9 27.9 27.4 −0.5 −0.5
Intellectual disability 24.7 25.1 24.6 −0.1 −0.5
Eligible individual 19.0 19.2 21.4 2.4 2.2
Multiple disabilities 13.9 13.7 13.1 −0.8 −0.6
Other health impairment 4.7 4.7 4.8 0.2 0.1
Speech or language impairment 2.2 2.1 2.0 −0.2 −0.1
Documented disability 2.2 2.0 2.0 −0.3 −0.1
Specific learning disability 1.9 1.8 1.5 −0.3 −0.3
Developmentally delayed 0.9 0.8 1.0 0.1 0.2
Emotional disturbance 0.7 0.7 0.5 −0.1 −0.2
Traumatic brain injury 0.5 0.4 0.5 0.0 0.0
Decline to answer 0.3 0.3 0.3 0.1 0.1
Orthopedic impairment 0.4 0.4 0.3 0.0 −0.1
Hearing impairment 0.3 0.3 0.3 0.0 0.0
Visual impairment 0.3 0.3 0.2 0.0 0.0
No disability 0.3 0.3 0.1 −0.3 −0.2
Deaf/blindness 0.1 0.1 0.1 0.0 0.0

English learner (EL) participation
Not EL eligible or monitored 93.3 93.7 93.7 0.4 0.0
EL eligible or monitored 6.7 6.3 6.3 −0.4 0.0
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Table 4

Distribution of First Contact Survey Variables in the Propensity Score Models

Variable 2017–
2018 (%)

raw

2017–
2018 (%)
adjusted

2018–
2019 (%)

Raw
difference

Adjusted
difference

Computer use
Cannot access a computer 4.2 4.1 4.2 0.0 0.1
No opportunity to access a computer 1.8 1.7 1.9 0.1 0.2
Uses with human support 51.2 51.1 51.3 0.1 0.3
Accesses with assistive technology 3.1 3.1 3.1 0.0 0.0
Accesses independently 39.7 40.0 39.5 −0.2 −0.5

Instructional setting
Homebound/hospital 0.5 0.5 0.5 0.0 0.0
Residential facility 0.9 0.9 0.8 −0.1 −0.1
Separate school 29.0 28.3 27.4 −1.5 −0.9
Less than 40% of day in regular class 52.8 53.8 55.4 2.6 1.6
40-79% of day in regular class 12.7 12.7 12.5 −0.3 −0.2
80% of day or more in regular class 4.2 3.8 3.5 −0.7 −0.3

English primary language
Yes 92.8 93.0 92.6 −0.2 −0.4
No 7.2 7.0 7.4 0.2 0.4
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Table 5

Distribution of Complexity Band Variables in the Propensity Score Models

Variable 2017–
2018 (%)

raw

2017–
2018 (%)
adjusted

2018–
2019 (%)

Raw
difference

Adjusted
difference

Communication band
Foundational 7.3 7.2 7.3 0.0 0.2
Band 1 22.4 22.5 22.9 0.5 0.5
Band 2 23.5 23.6 24.2 0.7 0.6
Band 3 46.7 46.7 45.5 −1.2 −1.2

English language arts band
Foundational 11.4 11.4 11.8 0.4 0.4
Band 1 32.9 32.8 34.0 1.1 1.2
Band 2 40.7 40.4 40.1 −0.5 −0.3
Band 3 15.0 15.4 14.0 −1.0 −1.4

Mathematics band
Foundational 12.1 12.0 12.2 0.2 0.3
Band 1 35.6 35.7 36.5 0.9 0.8
Band 2 40.8 40.8 40.8 0.0 0.0
Band 3 11.6 11.6 10.5 −1.1 −1.1

Science band
Foundational 14.3 14.2 14.2 −0.1 0.0
Band 1 41.0 41.0 41.8 0.8 0.8
Band 2 30.0 30.0 30.4 0.4 0.4
Band 3 14.7 14.8 13.6 −1.1 −1.2

Receptive communication* 18.1 18.1 18.0 −0.1 0.0
* Values for the receptive communication scale represent the average score.

To evaluate the effectiveness of the matching algorithm, we can calculate the mean absolute difference
between the 2018–2019 percentages and both the raw and adjusted 2017–2018 percentages. In addition,
we can calculate a weighted mean absolute difference, where larger groups are given more weight relative
to groups with smaller counts. If the matching algorithm works as expected, we would expect to see smaller
differences when using the adjusted percentages (i.e., the sample is more similar to 2018–2019). Table 6
shows the unweighted and weighted mean absolute differences for each type of variable. For example,
when using the raw 2017–2018 sample, there was a mean absolute difference of 0.34 percentage points
from 2017–2018 to 2018–2019 across all demographic variables (Table 3). When using the adjusted
sample, this differences dropped to 0.29. Similarly, the weighted mean absolute difference was 0.49 when
using the raw data from 2017–2018, compared to only 0.38 when using the adjusted sample.

Overall, across all variables, there was a mean absolute difference of 0.44 and a weighted mean absolute
difference of 0.60 between the 2018–2019 distributions and the raw 2017–2018 distributions. When using
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the adjusted sample for 2017–2018, these values decreased to 0.40 (unweighted) and 0.52 (weighted).
Thus, overall and by variable subsets, the propensity score model and matching algorithm succeed in
making the 2017–2018 sample more closely resemble the 2018–2019 sample. Given these findings, we
can proceed with estimating change in the performance level distributions using the adjusted sample from
2017–2018.

Table 6

Mean Absolute Difference From Raw and Adjusted 2017–2018 Distributions to 2018–2019

Variable set Unweighted
raw

Unweighted
adjusted

Weighted
raw

Weighted
adjusted

Demographic 0.341 0.287 0.494 0.378
First Contact 0.463 0.385 0.755 0.627
Complexity Band 0.597 0.618 0.620 0.612

3. Identifying Aberrant Changes
Once we have our two samples (the current year’s data and the resampled data from the comparison
year), we can calculate the percentage of students achieving at each performance level within each grade
and subject. However, these percentages are estimates of the true percentage. That is, if the entire
assessment were delivered repeatedly, slightly different percentages would be observed for each
repetition. The amount of uncertainty in each percentage can be quantified through the estimation of the
standard error, and the standard errors from the two comparison years can be used to estimate a standard
error of the change in percentage across years.

The standard error is a measure of uncertainty around the estimated percentage or change. The smaller
the standard error, the more certainty there is in the estimate. The standard errors of the percentages are
estimated using a multinomial log-linear model. Although standard errors could be calculated for each of
the estimated percentages as if they were binomial percentages (e.g., Agresti & Coull, 1998; Brown et al.,
2001), this is not strictly accurate. The multinomial model yields the same estimated percentages but is
able to account for non-binary categories when estimating the standard errors. The model is estimated by
predicting the counts of each performance level from an intercept and a categorical indicator of the
administration year.

log(𝑛𝑐) = β0 + β1Xyear (1)

The model parameters are then used to calculate the estimated percentages and standard errors using
estimated marginal means (Harvey, 1960; Searle et al., 1980). Estimated marginal means are useful for
evaluating the true impact of different features (i.e., administration year) on an outcome variable (i.e.,
performance level classifications) when there are unequal subclass sizes. This is often the case for DLM
assessments, where sample sizes vary between years, and the percentages of students in each
performance level are unequal. Standard errors are calculated for the estimated marginal means,
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providing the best possible approximation of the uncertainty around an observed percentage of students at
a given performance level.

Finally, just as with standard model estimates, pairwise contrasts can be calculated to estimate the change
in percentages across years using the estimated marginal means. The contrasts estimate the change from
the yearly percentages and the standard error of the change from the associated yearly standard errors.
As with the model estimates, the change and standard errors account for unequal subclass sizes. The
pairwise contrasts allow for multiple interpretations. First, the estimated marginal means can be used to
calculate a t-statistic and p-value for the change. Because multiple comparisons are made for each model
(i.e., multiple performance levels), a Tukey correction is applied. However, statistical significance does not
necessarily mean that the changes are practically important. Thus, two effect sizes can be calculated. This
first effect size is Cohen’s d (Cohen, 1988). Cohen’s d is calculated as

𝑑 =
μ1 − μ2

√(σ21 + σ22) ÷ 2
(2)

where μ1 and μ2 are estimated mean (i.e., percentage) in each year, and σ21 and σ22 represent the squared
standard errors for the estimates. Thus, Cohen’s d represents a standardized mean difference. However,
Cohen’s d does make an implicit assumption that the means being compared are continuous. This is not
true for performance level distributions, which are represented by percentages, and therefore are bound
between 0 and 1. Thus, Cohen’s d can be misleading, especially in cases where the estimated percentage
is close to the boundaries. To correct for this, we can instead estimate Cohen’s h (Cohen, 1988). Cohen’s
h is a standardized difference in proportions, and can be calculated as

ℎ = φ1 − φ2 (3)

where φ represents the arcsine transformation of the estimated proportion, 𝑝, defined as

φ = 2arcsin√𝑝 (4)

Cohen’s h also has limitations. Note that in Equation 3 and Equation 4, the effect size is based only on the
proportion of students achieving at a given performance level in each year. Neither sample size or the
standard errors are included in the calculation. This can lead to misleading results when sample sizes are
small, as a small change in the number of students in each performance level could lead to large
percentage point changes. When calculating effect sizes for the DLM assessments, we use Cohen’s h
when the sample size is greater than 200 in both comparison years and Cohen’s d when the sample size is
less than 200. Both Cohen’s d and Cohen’s h can be interpreted on the same scale using the guidelines
proposed by Cohen (1988) and expanded by Sawilowsky (2009). Effect sizes with a magnitude less 0.2
are negligible, between 0.2 and 0.5 are small, between 0.5 and 0.8 are moderate, and greater than 0.8 are
large. By using Cohen’s h as a default, we are able to evaluating changes in proportion without relying on a
continuous measure. However, when the sample size is low (i.e., < 200), we can use Cohen’s d, which can
account for increased uncertainty that results from the smaller sample. Thus, when estimating changes in
performance level distributions, we calculate the change in the percentage of students achieving at each
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performance level, an effect size (either Cohen’s h or Cohen’s d, depending on sample size), and an effect
size classification. In the following section, we discuss how to report these different outcomes.

4. Reporting Results
Reporting the results of the changes to performance level distributions requires us to provide as much
information as possible without overwhelming the audience. For DLM assessments, there are four
performance levels (Emerging, Approaching the Target, At Target, and Advanced) and one proficiency
level (the percentage of students at the At Target or Advanced levels) for each grade, subject, and
assessment model. This results in a total of 215 changes, effect sizes, and effect size classifications. To
effectively communicate these outcomes, results are presented in three tables: Instructionally Embedded
ELA and mathematics, Year-End ELA and mathematics, and science. The tables contain the estimated
percentage point change for each performance or proficiency level, and table cells are shaded according to
the effect size classification. This combination of values and shading allows readers to easily see the
estimated change, as well as an indication of importance based on the shading. In the following sections,
we describe the method and rationale for how color is applied to the tables and provide a demonstration of
the method using the 2017–2018 to 2018–2019 comparison.

4.1. Table Shading Methodology
The table shading uses a value-suppressing uncertainty palette (VSUP), as described by Correll et al.
(2018). VSUPs are bivariate color scales that normally show the raw value on one axis, and the
uncertainty on the other. Figure 3 shows a traditional bivariate color palette compared to the VSUP. The
VSUP uses a branching structure, such that there is greater differentiation of the colors when uncertainty is
low. As uncertainty increases, there are fewer colors, with lower discrimination. In this way, VSUPs can
discourage unintended conclusions when uncertainty is high.
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Figure 3

Comparison of Bivariate Color Palette and Value-Suppressing Color Palette

A B

Note. Panel A: A standard bivariate color palette. Panel B: A value-suppressing uncertainty palette of the
same color palette.

In the present analysis, rather than mapping the vertical axis to uncertainty, we use the effect size. That is,
as the effect size gets closer to 0, the change has less practical significance, and therefore is represented
with less differentiated colors. Additionally, for the changes in performance level distributions, we do not
require the level of detail present in the full VSUP (Figure 3B). Rather, we adopt a reduced VSUP, as
shown in Figure 4. In this version, the total number of colors has been reduced from the 15 in Figure 3B to
only 6. For large and moderate effect sizes, decreases in the percentage of students at a given
performance or proficiency level are shaded orange, and increases are shaded blue. Moderate effect sizes
use a desaturated color to indicate that the effect is less strong. Finally, changes with small effect sizes are
shaded grey, regardless of the direction of the change, and negligible effect sizes receive no shading.

Figure 4

Reduced Value-Suppressing Uncertainty Palette
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This specific color palette was chosen for two reasons. First, orange and blue are neutral colors that are
not traditionally associated with positive or negative connotations (such as green or red). Neutrality in the
color palette is beneficial because the same value of change could be seen as subjectively positive or
negative depending on the context. For example, a 5-point increase in the percentage of students at a
given performance level might be seen as a positive if the increase is occurring at the At Target level.
Conversely, that same 5-point increase might be seen as a negative if the increase occurs at the Emerging
level. Thus, we chose a palette that would not bias readers with unintended connotations. Second, the
orange and blue color palette is accessible for individuals with color vision deficiency (i.e., color blindness).
Figure 5 shows a simulation of what the palette in Figure 4 looks like under the three most common forms
of color blindness: deuteranomaly, protanomaly, and tritanomaly (Simunovic, 2010). Under all three forms
of color deficiency, the orange and blue color palette can be easily differentiated.

Figure 5

Simulation of Selected Color Palette with Common Forms of Color Blindness

A B C

Note. Panel A: Simulation of deuteranomaly, a form red-green color blindness. Panel B: Simulation of
protanomaly, another form of red-green color blindness. Panel C: Simulation of tritanomaly, a form of blue-
yellow color blindness.

In summary, the reduced-VSUP used for the performance level changes is able to communicate both the
direction of the change (i.e., increasing or decreasing), as well as the practical importance, as defined by
the effect size. Additionally, the chosen color palette is accessible and able to communicate this information
without unintended connotations. In the next section, we apply this visualization method to observed data.

4.2. Example Reporting
Table 7, Table 8, and Table 9 present the example results for the Instructionally Embedded model, the
Year-End model, and science, respectively, using 2017–2018 and 2018–2019 data. The numbers in the
tables reflect the percentage point changes for each performance level from 2017–2018 to 2018–2019,
adjusting the 2017–2018 sample using the propensity score matching described above. For example, the
percentage of students in grade 3 ELA for the Instructionally Embedded model who achieved at the
Emerging level decreased by 1.1 percentage points from 2017–2018 to 2018–2019 (Table 7). The cell
shading in the tables reflects the importance of the percentage point changes for each performance level,
as defined by the effect size of the change. For example, the percentage point change of −1.1 for grade 3
ELA at the Emerging level in the Instructionally Embedded model has no shading, which indicates the
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percentage point change was negligible. To provide a second non-negligible example, the percentage
point change for grade 10 mathematics at the Emerging level in the Year-End model was 13.0. This cell is
shaded grey, which indicates a small effect size.

In total, the Emerging level for grade 10 mathematics in the Year-End model was the only non-negligible
effect size across all models, subjects, and grades. Some changes that were large in magnitude were
identified as negligible changes. For example, in grade 3 science, the percentage of students achieving at
the Emerging performance level decreased by 22.3 percentage points in 2018–2019. However, the sample
size for this grade was relatively small in 2017–2018 (n = 145), as no states tested grade 3 for
accountability purposed in that year. In this instance, the small sample size results in an effect size of
−0.15, which is just short of the 0.2 magnitude that is required for a small effect size. Thus, overall, the
results suggest that the performance level distributions were stable from 2017–2018 to 2018–2019, after
adjusting for population differences.
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Table 7

Instructionally Embedded Performance Level Changes, by Grade, 2017–2018 to 2018–2019

Performance level 3 4 5 6 7 8 9 10 11

English language arts
Emerging −1.1 0.3 0.4 1.0 −1.7 4.0 −3.3 — −2.0
Approaching the Target 2.1 −0.8 −0.2 0.3 0.7 −3.7 −0.7 — 1.9
At Target −0.4 −0.4 2.5 −1.4 0.1 0.1 3.1 — −0.6
Advanced −0.6 0.9 −2.7 0.1 0.9 −0.4 0.9 — 0.6

At Target/Advanced −1.0 0.5 −0.3 −1.3 1.0 −0.2 4.0 — 0.1

Mathematics
Emerging 1.1 0.3 2.4 −1.7 −3.9 −0.2 −4.3 −2.8 −8.2
Approaching the Target 1.6 −1.9 −2.5 2.5 0.8 −2.8 2.5 0.7 2.9
At Target −2.1 0.8 0.7 −2.1 1.3 1.8 1.4 0.4 3.5
Advanced −0.6 0.8 −0.5 1.4 1.8 1.2 0.4 1.7 1.9

At Target/Advanced −2.7 1.6 0.1 −0.7 3.2 3.0 1.8 2.1 5.4

Note. English language arts is grade banded in grades 9–10 and 11–12.
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Table 8

Year-End Performance Level Changes, by Grade, 2017–2018 to 2018–2019

Performance level 3 4 5 6 7 8 9 10 11

English language arts
Emerging 1.7 1.4 2.0 0.9 −0.5 −0.3 2.5 5.1 0.7
Approaching the Target 0.7 4.0 2.1 1.3 2.9 1.8 4.0 −1.5 1.6
At Target −1.2 −3.7 −3.7 −0.3 1.4 −0.5 −3.5 −3.1 −0.5
Advanced −1.2 −1.6 −0.4 −1.9 −3.8 −1.0 −3.1 −0.4 −1.8

At Target/Advanced −2.4 −5.4 −4.1 −2.2 −2.4 −1.5 −6.5 −3.6 −2.3

Mathematics
Emerging 1.4 2.6 2.7 0.6 1.4 1.3 5.2 13.0 0.1
Approaching the Target −0.6 −1.5 −0.4 0.9 −0.5 −0.1 −1.4 −7.3 2.2
At Target 0.2 −0.4 −1.3 −0.4 −0.3 −1.0 −2.3 −5.5 −2.2
Advanced −1.0 −0.7 −0.9 −1.1 −0.7 −0.2 −1.6 −0.1 −0.1

At Target/Advanced −0.8 −1.1 −2.2 −1.5 −1.0 −1.3 −3.8 −5.7 −2.3
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Table 9

Science Performance Level Changes, by Grade or Course, 2017–2018 to 2018–2019

Performance level 3 4 5 6 7 8 9–12 Biology

Emerging −22.3 −0.9 2.4 −7.0 −12.4 1.5 0.7 −1.1
Approaching the Target 15.8 −0.1 −1.7 −2.2 −1.6 −0.1 0.7 −0.7
At Target −1.3 0.2 −0.8 6.3 9.5 −1.6 −1.1 −0.9
Advanced 7.9 0.8 0.0 2.8 4.5 0.1 −0.4 2.7

At Target/Advanced 6.5 1.0 −0.7 9.2 14.0 −1.4 −1.4 1.8
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5. Discussion
In this report, we described and demonstrated a method for evaluating changes to performance level
distributions when there has been a disruption to the population of students completing the assessment.
This method is applicable to both acute disruptions (e.g., the COVID-19 pandemic), and long-term
systematic changes (e.g., state compliance with ESSA 1% threshold). Specifically, we utilized propensity
score models to resample students from previous administrations to more closely resemble the current
demographic makeup of the population. This approach allows us to estimate what the performance level
distributions would have looked like in prior years if the students’ educational experiences were unchanged,
but the population had demographic characteristics similar to the current population. Thus, any observed
changes to the performance distributions would be a result of factors other than population changes.

To demonstrate this method, we applied a propensity score matching approach to data from the
2017–2018 and 2018–2019 administrations of the DLM alternate assessments. Results showed that the
propensity score matching method proposed in this report was successful in reducing the differences
between the populations from the two administration years. By accounting for population differences
across the administrations, we were able to more effectively evaluate the changes in the performance level
distributions as reflections of changes in performance rather than changes in population. Further, we
presented a method for visualizing the changes that shows the magnitude of the changes while also
allowing readers to quickly identify which changes were notable.

Throughout the report, we demonstrated our approach with data from the DLM assessments; however,
these methods are can be applied to any operational assessment program. Although we selected a
random forest model to use with the DLM assessments, we described a process for comparing and
selecting from a set of possible propensity score models (Appendix A). Thus, following this approach,
psychometricians in other assessment programs have the flexibility to select the propensity score model
that is most appropriate for their data and student population. Additionally, the propensity score matching
approach described in this report can be used for both acute and long-term systematic changes to the
population of students participating in an assessment. Some changes to the student population have
already happened (e.g., those resulting from COVID-19 and the “opt-out movement”), while other changes
are ongoing (e.g., compliance with the ESSA 1% threshold for AA-AAS participation). Undoubtedly, there
will be unforeseen disruptions in the future that cause additional changes to student population. The
methods described in this report are not specific to any particular assessment or change in the student
population. Therefore, these methods can be adapted for any situation, present or future, in which there
was potentially a change to the student population across years, but an assessment program needs to
evaluate changes in performance level distributions.

In any application, the propensity score matching method described in this report is constrained by the
available data. For the DLM assessments, we used baseline demographic variables and responses to the
First Contact survey as predictors in the propensity score model. However, there may be other important
variables that were not included in this set of variables. If there were other factors that influenced
assessment participation across years which are not included, the matched sampling may not fully capture
all of the differences between the two administrations. Other applications of this work, and future research
on these methods, should carefully consider potential variables to include in the propensity score model
and evaluate the impact of leaving out important predictors on the effectiveness of matching algorithm.
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In summary, this report demonstrated a framework for estimating changes in performance distributions
across years when the student population has been disrupted, either intentionally or due to exigent
circumstances. While this report specifically demonstrated the framework for the DLM alternative
assessments, the methods can be applied to other assessment programs to facilitate cross-year
comparisons that may otherwise be difficult or inappropriate. By accounting for population differences
across years, we can make stronger claims that observed differences in performance level distributions are
truly due to changes in performance, rather than a change to population of students completing the
assessment.
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A. Comparison of Propensity Score Models
Propensity scores were estimated for each model, grade, and subject combination independently. This
was done so that changes in one grade could be accounted for, even if the overall population was stable.
In the propensity score model, the administration year (i.e., 2017–2018 or 2018–2019) was predicted from
a wide variety of student demographic variables and First Contact survey responses. The included
predictor variables are shown in Table 1. Because students do not have a receptive communication band
assigned, a sum score scale was used.

It should be noted that these models are not intended to be causal or explanatory in any way. It would not
be reasonable to claim a student’s set of demographic covariates caused them to be assessed in a given
year. Rather, the goal of these models is purely prediction (Yarkoni & Westfall, 2017). Regardless of the
underlying causal processes, we aim predict which year a student was more likely to be assessed in. For
the purpose of evaluating performance level changes across years, achieving equivalent samples across
years is a higher priority than understanding the specific causal processes that resulted in non-equivalent
samples (Shmueli, 2010). With this goal in mind, three methods were examined for estimating the
propensity scores for each student. In addition to the random forest model described in Section 2.1, we
also considered a logistic regression with LASSO (Least Absolute Shrinkage and Selection Operator)
regularization (Friedman et al., 2010) and a boosted tree system (Chen & Guestrin, 2016; Chen et al.,
2021). All of these methods are machine learning algorithms that can be used for variable selection to
improve out of sample prediction.

For the logistic regression models with a LASSO regularization term used in this study, a binary response
variable is modeled using a linear combination of predictor variables along with a logit link function
(DeMaris, 1995; Peng et al., 2002; Sperandei, 2014). Logistic regression algorithms strive to find the
weighted linear combination of predictor variables that best predict the response variable (Stoltzfus, 2011).
The best weighted linear combination of predictor variables is determined by minimizing the sum of the
loss function (i.e., the discrepancy between the true classification and the model-predicted classification)
and the LASSO regularization term (i.e., the penalty for model complexity). More specifically, LASSO
regularization constrains the coefficients for less influential predictor variables to zero in order to prioritize
parsimonious models (Tibshirani, 1996).

Boosted tree systems also comprise a multitude of trees (XGBoost Developers, 2020). While random
forests capitalize on the Law of Large Numbers to ensure improved performance (Breiman, 2001), boosted
tree systems apply boosting to weak learners to achieve improved performance (Schapire, 2003). Weak
learners for boosted tree systems are shallow trees that perform only slightly better than random guessing
(Kearns & Valiant, 1994). Because it is often easier to identify weak learners than strong learners, boosting
allows for many weak learners to be combined such that model performance is drastically increased
compared to any individual weak learner (Schapire, 2003). Boosted tree systems add relatively shallow
trees to the system one at a time, while using a gradient descent function to give weight to data points so
that previous errors are corrected (Friedman, 2001; Natekin & Knoll, 2013). Adding trees based on the
gradient descent function facilitates optimal learning of the structure of the trees in the system, which
should improve model performance (XGBoost Developers, 2020). A weighted majority vote across all the
trees in the system can then be used to determine the model classification.

Just like the random forest model, the LASSO logistic regression and boosted tree system also include
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hyperparameters that cannot be estimated from the data. For the LASSO logistic regression, this is the
penalty term that indicates the amount of regularization to perform. The boosted tree system includes the
most hyperparameters. First, boosted trees include both of the hyperparameters that are included in the
random forest (i.e., the number of predictors that are randomly sampled at each split when creating
individual trees and the minimum number of data points in a node that are required for the node to split
further). In addition to those two hyperparameters, the boosted tree system also includes parameters that
control the total number of splits in a tree, the rate at which the boosting algorithm learns from iteration to
iteration, the reduction in the loss function required to split further, and the amount of data exposed to the
fitting routine. To estimate these model hyperparameters while also avoiding optimization bias, we used a
nested resampling approach (see Figure 1). Model estimation then proceeds for each model as described
for the random forest (Section 2.1).

Figure A.1 shows the ROC curves for the ELA and mathematics models and science models, respectively.
In these figures, there is one curve for propensity score model and each grade or grade band (i.e.,
Instructionally Embedded ELA grades 9–10 and 11–12, and science grades 9–12). Curves that are pulled
toward the upper left corner indicate higher predictive accuracy. The dotted line running through the
diagonal of each panel represents random guessing. In general, we see that the curves for all three
models are quite similar, with most models performing only slightly better than what would be expected by
chance. This is not surprising, as we expect the population to be mostly stable across years. We expect
changes to occur on the margins, as states enact policies to reach to the 1% ESSA threshold. In an ideal
world where the population is completely stable, all the models would perform equal to chance (i.e., we
cannot differentiate the population across years). The fact that we are able to predict at greater than
chance, even marginally greater, indicates that there are slight changes to the population the models are
able to detect. Thus, how much greater than chance we are able to predict can also serve as a rough
measure of how much the population has shifted.

There are a few exceptions to the overall trends in Figure A.1. First, in Year-End ELA and mathematics,
there are two sets of curves that are well above the others. These are grade 9 and grade 10. This is likely
due to one state that changed their requirements for which high school grades are tested. This created a
large shift in the observed demographics for these grades, making prediction easier for these grades.
Second, there are few science curves that are further above the diagonal, although not to the extent of the
grade 9 and 10 Year-End model curves. These curves are for grades 3, 6, and 7. These are the grades
with the smallest sample size and were impacted by the addition of a new science state in 2018–2019.
This state assesses science in all elementary and middle school grades and greatly increased the sample
size in each those three grades (i.e., ~200 in 2017–2018 to ~700 in 2018–2019). Because these grades
had such a large proportional increase in sample size, and because that increase almost exclusively came
from one state, the models were able to more accurately predict administration year. Finally, there is one
science curve that is noticeably below the diagonal, indicating performance less than chance. This curve is
for the boosted tree model for the end-of-course Biology assessment, which has a very small sample size
(2017–2018, n = 169; 2018–2019, n = 201). As discussed above, the boosted tree system includes a
hyperparameter that controls how much of the available data is used in the estimation. Thus, this model
uses an even smaller sample that what is available. Because the original sample sizes are already so
small, it is likely that there is simply not enough data for this model to get a good estimation.
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Figure A.1

ROC Curves for Estimated Propensity Score Models
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We can quantify the performance of each model by calculating the total area under the ROC curve. An
area of 1.0 indicates perfect prediction (i.e., the curve goes all the way up to the top left corner), and a
value of .5 indicates chance guessing (i.e., the curve lies directly on the diagonal). Table A.1 shows the
average accuracy (proportion of correct predictions), and Table A.2 shows the area under the ROC curve,
across grades or grade bands. Overall, the random forest model tends to outperform both the LASSO
logistic regression and boosted tree models. The median area under the ROC curve is higher for the
random forest model in science and Year-End ELA and mathematics, and is comparable for Instructionally
Embedded ELA and mathematics. Additionally, the average accuracy is higher for the random forest
model for everything except Instructionally Embedded mathematics. Based on these results, the random
forest was selected as the final propensity score model to be used for each grade and subject.

Table A.1

Accuracy of Propensity Score Models, Across Grades

Subject Logistic regression Random forest Boosted trees

Instructionally Embedded
English language arts .559 .558 .558
Mathematics .547 .536 .568

Year-End
English language arts .513 .522 .518
Mathematics .510 .522 .520

Science .537 .533 .533

Table A.2

Area Under the Receiver Operating Curves of Propensity Score Models, Across Grades

Subject Logistic regression Random forest Boosted trees

Instructionally Embedded
English language arts .571 .569 .569
Mathematics .555 .543 .547

Year-End
English language arts .518 .530 .523
Mathematics .518 .533 .529

Science .565 .586 .549
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