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Executive Summary
Diagnostic assessments measure the knowledge, skills, and understandings of students at a smaller
and more actionable grain size than traditional scale-score assessments. Results of diagnostic
assessments are reported as a mastery profile, indicating which knowledge, skills, and
understandings the student has mastered and which ones may need more instruction. These mastery
decisions are based on probabilities of mastery derived from diagnostic classification models (DCMs).

This report outlines a Bayesian framework for the estimation and evaluation of DCMs. Specifically,
this report describes the following:

• a model definition that allows for various parameter equality constraints within a consistent
conceptual framework

• the role of prior distributions in the model building process
• an estimation process utilizing the popular Stan programming language
• the assessment of estimation diagnostics, such as the R̂ and effective sample size
• the evaluation of model fit using posterior predictive model checks
• model comparison using the cross-validation approximations and model averaging

Findings illustrate the utility of the Bayesian framework for estimating and evaluating DCMs in
applied settings. Specifically, the findings demonstrate how a variety of DCMs can be defined within
the same conceptual framework. Additionally, using this framework, the evaluation of model fit is
more straightforward and easier to interpret with intuitive graphics. Throughout, recommendations
are made for specific implementation decisions for the estimation process and the assessment of
model fit.

Implications for the Field
DCMs offer many benefits over traditional scale-score reporting methods. For example, DCMs can
provide more actionable results through a fine-grained mastery profile (Feldberg & Bradshaw, 2019;
Clark & Karvonen, 2019) and more reliable scores with a shorter test length (Templin & Bradshaw,
2013; Wang, Song, Chen, Meng, & Ding, 2015). However, despite a growing field of literature
describing the benefits of DCM-based assessments, these models have not seen wide-spread use in
applied or operational settings (Sessoms & Henson, 2018). One reason put forward for this gap
between the theory and practice of DCMs is a lack a clarity in the applied research community for
how these models should be estimated and evaluated (Ravand & Robitzsch, 2015; Ravand &
Baghaei, 2019; Rupp & van Rijn, 2018). This report attempts to bridge the gap between theory and
practice by describing a Bayesian framework for estimating DCM models using the Stan
programming language and evaluating model fit using posterior predictive model checks.

This framework, which is used in an applied setting for the Dynamic Learning Maps® (DLM®)
alternate assessment, provides a flexible method for defining different types of DCMs. Additionally,
the model estimation processes and model fit measures are applicable to the variations in model
definition. That is, the same estimation and evaluation procedures can be applied to a wide range of
DCMs. Thus, this report provides a practical guide for applied researchers in order to integrate
DCMs into their own work.
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1. Purpose of the Report
Diagnostic classification models (DCMs) are able to provide fine-grained and actionable scores for a
set of assessed skills or attributes (Rupp, Templin, & Henson, 2010; Bradshaw, 2016). However,
because this class of models is relatively new to operational use, many psychometric properties
require further investigation to support the use of the assessments. One key feature that is not
well-defined in the literature is how best to assess the model fit of DCMs (Chen, de la Torre, & Zhang,
2013; Hu, Miller, Huggins-Manley, & Chen, 2016; Rupp et al., 2010). Most evaluations of model fit
rely solely on measures of relative fit (Sen & Bradshaw, 2017), which are limited in that these indices
are unable to evaluate the fit of the model to the data. Rather, these measures can only make
judgments relative to alternative comparison models. The other widely used method for evaluating
model fit is limited-information fit indices (e.g., Liu, Tian, & Xin, 2016). In general, these methods
consist of univariate, bivariate, and trivariate item tests that rely on χ2 tests that are known to be
asymptotically incorrect (Maydeu-Olivares & Joe, 2006). The M2 statistic developed by
Maydeu-Olivares and Joe (2005) can correct for the distributional assumptions, but that statistic is
still only based on limited information (i.e., limited sets of items), and therefore may fail to capture
higher-order characteristics of the data.

Due to these concerns, this document investigates a Bayesian framework for the estimation of this
class of models. This approach allows for the estimation of alternative methods for the evaluation of
model fit through posterior predictive model checking.

2. Defining the Bayesian Model
The general form of DCMs can be seen in equation (1), where the probability of respondent j

providing a given item response can be modeled as shown in equation (1).

P (Xj = xj) =
C∑

c=1

νc

I∏

i=1

π
xij

ic (1 − πic)
1−xij (1)

In equation (1), πic is the probability of a respondent in class c providing a correct response to item i,
and xij is the observed response (i.e., 0, 1) of respondent j to item i. Thus, π

xij

ic (1 − πic)
1−xij

represents the probability of a respondent in class c providing the observed response to item i. These
probabilities are then multiplied across all items, giving the probability of a respondent in class c

providing the observed response pattern. Finally, this probability is multiplied by νc, which is the
base rate probability that any given respondent belongs to class c. Thus, this product represents the
probability that a given respondent is in class c and provides the observed response pattern.

Although DCMs can be estimated with multiple attributes that have more than two latent categories
(Bradshaw, 2016), for illustrative purposes, this paper limits the discussion to single-attribute DCMs
with a binary latent trait. Thus, for each model, there are two potential mastery profiles for each
respondent (e.g., master and non-master). Note, however, that the methods presented in this paper
do generalize to models with multiple attributes with nonbinary latent categories.

Where different types of DCMs differ is in how πic is defined. For example, the log-linear cognitive
diagnosis model (LCDM; Henson, Templin, & Willse, 2009) defines πic similar to the way generalized
linear models with a logit link function are defined. Specifically, πic is defined as seen in equation (2),
where αc is a binary indicator of the mastery status for a respondent in class c.
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πic = P (Xic = 1 | αc) =
exp(λi,0 + λi,1,1αc)

1 + exp(λi,0 + λi,1,1αc)
(2)

When using this notation introduced by Rupp et al. (2010), the λ subscripts follow the order of item,
effect, then attribute. That is, the first subscript identifies the item for the parameter (noted as i). The
second subscript denotes the type of effect. Because this discussion is limited to single-attribute
models, there are only two types of effects where zero identifies an intercept and one identifies a
main effect. In models with multiple attributes, there may be additional effects for two-, three-, or
A-way interactions. Finally, the last element of the subscript identifies the attribute or attributes.
Again, as these are single-attribute models, this element is either nonexistent (for intercept terms
where no attribute is involved) or 1 (for all other effects). It is included here only for consistency with
the notation in Rupp et al. (2010).

For additional flexibility, equation (2) can be modified slightly in order to include both attribute- and
item-level effects, similar to multilevel models.

πic = P (Xic = 1 | αc) =
exp[λ0 + bi,0 + (λ1,1 + bi,1,1)αc]

1 + exp[λ0 + bi,0 + (λ1,1 + bi,1,1)αc]
(3)

Equation (3) shows the similarity to multilevel models. In this model, λ0 and λ1,1 represent the
attribute-level intercept and main effect, respectively. These are akin to the average intercept and
main effect for all items (the fixed effects in the multilevel model literature). In addition to the
attribute-level parameters, there are also item-level intercepts (bi,0) and main effects (bi,1,1). These
parameters represent the deviation from the attribute-level effect for each item. Thus, the full
intercept for item one would be calculated as λ0 + b1,0. This is similar to the estimation of random
intercepts and slopes for each item (Stroup, 2012). The difference between the proposed model and
multilevel models is the treatment of the variance of these item-level parameters. In multilevel
models, the variance of these effects would be estimated. However, the variance of the item-level
parameters can also be fixed to pre-specified values.

If the item-level parameters are constrained to be zero, then all items will have parameters equal to
the attribute-level parameter (i.e., all of the bi,0 and bi,1,1 parameters would be zero). This is
mathematically equivalent to what is referred to here as the fungiblemodel. Alternatively, the
item-level parameters can be allowed to vary freely with no constraints (i.e., a non-fungiblemodel).
Conceptually, these two models can be thought of as using a zero-variance prior (i.e., N (0, 0)) or
infinite-variance or flat prior (e.g., N (0, ∞)), respectively. Finally, a non-flat prior can be placed on
the item-level parameters, such that the parameters are not constrained to be zero but also not
allowed to vary completely freely either.

2.1. Prior Specification for Attribute-Level Effects
In equation (3), there are two attribute-level effects that require prior specifications. The first
attribute-level effect is λ0, which represents the average intercept across all items. Thus, this
parameter also represents the log-odds (due to the logit link function) of a non-master providing a
correct response to an average item. For this parameter, a N (µ = 0, σ = 2) distribution was used as
the prior. This prior distribution was chosen because 99% of the distribution encompasses the
plausible values for this parameter. Specifically, the middle 99% of the distribution consists of the
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log-odds range -5.15 to 5.15, which covers nearly all of the probability scale when other parameters
are equal to zero, as seen in Figure 1.

0.00

0.25

0.50

0.75

1.00

−4 −2 0 2 4

Log−odds

P
ro

b
ab

il
it

y

Figure 1. Log-odds to probability conversion.

The main effect parameters in the LCDM are constrained to be positive, thus ensuring monotonicity
in the model (e.g., masters always have a higher probability of providing a correct response; Henson
et al., 2009). Thus, the attribute-level main effect, λ1,1, uses a lognormal prior:
Lognormal(µ = 0, σ = 1). Similar to the attribute-level intercept, this distribution was chosen
because 99% of the distribution covers the range of plausible values. Specifically, the lower 99% of
this distribution covers the log-odds range of 0 to 10.24. An upper limit of approximately 10 was
desired, as a main effect of 10 would allow for an estimated probability of providing a correct
response near 1.0 in the extreme case where the intercept was -5 (the lower tail of the attribute-level
intercept prior distribution).

The distributions for these parameters are visualized in Figure 2.

Page 4



Bayesian Modeling for DCMs
Dynamic Learning Maps
Research Report #19-01

λ0 λ1, 1

−10 −5 0 5 10 0.0 2.5 5.0 7.5 10.0

0.0

0.2

0.4

0.6

0.00

0.05

0.10

0.15

0.20

Parameter Value

D
en

si
ty

Figure 2. Prior distributions for attribute-level effects.

2.2. Prior Specification for Item-Level Effects
The prior distributions for the item-level effects, bi,0 and bi,1,1, are determined by the type of model
that is being estimated. For this proof of concept, three models are considered: fungible,
non-fungible, and partial equivalency.

In the fungible model, it is assumed that all items measuring the attribute have the same item
parameters. That is, the item-level effects are equivalent to the attribute-level effect. Thus, the
item-level deviations from the attribute-level effects are all equal to 0. Conceptually, this means using
a N (µ = 0, σ = 0) prior for all bi,0 and bi,1,1 terms. In practice, to increase computational efficiency,
these terms are left out of the model, and only the attribute-level effects are estimated.

In contrast, the non-fungible model assumes that the item parameters are independent of one
another. In other words, the parameters for one item do not dictate the parameters of other items.
Conceptually, this means that the item-level deviations from the attribute-level effects are
unconstrained, and thus an infinite uniform prior, U(−∞, +∞), would be used for all bi,0 and bi,1,1

terms. In practice, it is more efficient to directly estimate individual parameters for each item rather
than attribute-level effects with unconstrained item-level deviations. Therefore, this model more
closely resembles a true LCDM in equation (2), with the λi,0 and λi,1,1 parameters using the prior
distributions described for the attribute-level priors.

The partial equivalency model represents a compromise between the fungible and non-fungible
models. In this model, item-level parameters are not entirely independent but are also not
constrained to be equivalent. Instead, the item-level parameters are assumed to come from some
distribution of deviations. The smaller the variance of the distribution, the more fungible the items
are. Conversely, a large variance would correspond to less fungibility. Conceptually and in practice,
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this model is similar to multilevel models. The item-level deviations use a hierarchical normal prior,
N (µ = 0, σ), where σ is an estimated parameter in the model. The σ parameter uses a half-Student’s
t-distribution with df = 3 (Figure 3). This prior ensures that the variance is always positive and also
allows for larger variances than a normal distribution would. However, the variances are also
constrained to reasonable values (i.e., less than approximately 5).
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Figure 3. Prior distribution for hierarchical variance prior.

2.3. Prior Specification for Class-Level Parameters
The last parameter that requires a prior is the structural parameter in equation (1), νc. This parameter
defines the base rate of inclusion for each class. As such, ν is constrained so that all elements sum to
one (i.e., there are no non-class respondents). Because this discussion is limited to models with a
single binary attribute, there are only two classes and therefore two elements of ν. No assumptions
are made about the base rate of mastery for attributes; therefore, a uniform Dirichlet prior, Dir(1),
was used for the prior distribution. As there are only two classes, this is equivalent to using a
uniform Beta distribution, Beta(α = 1, β = 1), for ν1 and then calculating ν2 as ν2 = 1 − ν1.

3. The Bayesian Framework in Practice
In order to demonstrate the utility and benefits of using the Bayesian model definition and estimation
process, a single simulated data set was generated. This data set was then used to walk through each
step of the Bayesian model fit process, from model estimation to model evaluations and comparisons.
All analyses were performed in R version 3.6.1 (R Core Team, 2019).
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3.1. Measures

To demonstrate the Bayesian framework in practice, the Dynamic Learning Maps® (DLM®) Alternate
Assessment System is used as an example diagnostic assessment where this framework is applicable.
DLM assessments in English language arts (ELA), mathematics, and science are administered in 19
states to students with the most significant cognitive disabilities. For exemplary purposes, the
through-course assessment model, which features instructionally embedded assessments during the
year, is used as a template.

In the instructionally embedded model, students cover the entire testing blueprint during each of two
testing windows. The first testing window occurs during the fall, from September through December.
The second window is open during the spring from February through May. During each window,
students take one or more testlets, each consisting of three to nine items, for each alternate content
standard (called an Essential Element [EE]) required for blueprint coverage. To ensure that each EE is
accessible to all students, each EE is associated with multiple skills that represent the EE at varying
levels of depth, breadth, and complexity (called linkage levels). There are five linkage levels for each
EE in ELA and mathematics and three linkage levels for each EE in science. Due to the intended
flexibility of the instructionally embedded testing model, students may or may not test on the same
EE and linkage level multiple times within a testing window or across testing windows. Thus, the
number of responses that can be used to estimate student mastery of a linkage level varies by
student. For more details on the assignment of testlets, see Chapter 4 of Dynamic Learning Maps
Consortium (DLM Consortium, 2016).

For modeling and scoring the DLM assessments, the linkage level is the unit of analysis. That is, a
latent class analysis (LCA; Bartholomew, Knott, & Moustaki, 2011) with two classes is estimated for
each linkage level (see Chapter 5 of DLM Consortium, 2017). The latent class model currently
employed for operational use represents an unconstrained version of the models defined in Section 2
(Henson et al., 2009; Rupp et al., 2010). Specifically, as discussed in Section 2.2, the main effects of
equation (3) are constrained to be positive to ensure monotonicity in the model. When using the
unconstrained latent class model, post hoc analysis is needed to ensure the mastery classes are
properly defined (i.e., the labels of master and non-master are applied to the correct classes).

Regardless of the choice between the LCA or DCM for estimation, the resulting score is the
probability that the student has mastered the linkage level. This probability is often dichotomized
into a mastery categorization (Bradshaw & Levy, 2019). For example, the DLM assessments use a
mastery threshold of 0.8 (see Chapter 5 of DLM Consortium, 2017). That is, students with a mastery
probability of 0.8 or higher are classified as masters, and students with a mastery probability of less
than 0.8 are classified as non-masters. Thus, the scores used for reporting are a profile of mastery
classification decisions for each linkage level. For further details on the scoring model for DLM
assessments, see Chapter 5 of DLM Consortium (2017).

3.2. Simulated Data
To illustrate the Bayesian methods for estimating and evaluating diagnostic models, a single data set
was generated. Simulated data was chosen for two reasons. First, because the data is simulated, the
expected results of the analysis are known. Thus, the results can be compared to the a priori
expectations to confirm that the methods work as expected. Second, by using simulated data, it is
possible to ensure that some models fit the example data and others do not. This means that when
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examining model fit, there will be examples of fitting and non-fitting models that can be compared.
Although this is useful for illustrating the methods, it is important to remember that the data was
generated to serve this purpose.

When simulating the example data set, the data was structured similarly to the DLM assessments. In
this way, the structure of the simulated data matched what could reasonably be expected from an
operational assessment scaled with a DCM. Specifically, items were grouped together into testlets,
and testlets were assigned to either the fall or spring testing window. By assigning testlets to the
testing windows, it was possible to simulate data with students testing on combinations of testlets
consistent with observed data. In other words, the amount and structure of missing data (from
testlets not assigned to a student) was comparable across the simulated and observed data.
Additionally, following the DLM test design, all items were assumed to follow a simple Q-matrix
structure, where all items measure a single attribute (DLM Consortium, 2016). Item parameters were
simulated according to the partial equivalency model defined in equation (3). Thus, the partial
equivalency and non-fungible models are expected to show adequate model fit, as these are the true
model and a less-constrained model, respectively. Conversely, the fungible model should show poor
fit, as the fungible model is more constrained than the partial equivalency model.1

The attribute-level intercept, λ0, was drawn from a U(−2.25, −1.00) distribution, and the
attribute-level main effect, λ1,1, from a U(1.00, 4.50). The item-level deviations bi,0 and bi,1,1 were
drawn from a N (µ = 0, σ = 1.0) distribution. This resulted in total item intercepts and main effects
consistent with those reported for other measures that have been scaled with the LCDM (e.g.,
Bradshaw, Izsák, Templin, & Jacobson, 2014; Templin & Bradshaw, 2014; Templin & Hoffman, 2013).
The true parameter values for each testlet and item that were used to simulate the data can be seen in
Table 1.

1The partial equivalency model was chosen in order to illustrate differences between fitting and non-fitting models and
thus should not imply that this model best represents DLM data. See DLM Consortium (2017) for more information on the
operational model used for DLM assessments.
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Table 1. True Item Parameters

Window Testlet Item λ0λ0λ0 λ1,1λ1,1λ1,1 bi,0bi,0bi,0 bi,1,1bi,1,1bi,1,1 λ0 + bi,0λ0 + bi,0λ0 + bi,0 λ1,1 + bi,1,1λ1,1 + bi,1,1λ1,1 + bi,1,1

1 -1.52 3.19 0.25 1.00 -1.27 4.19
2 -1.52 3.19 -0.45 0.12 -1.96 3.30
3 -1.52 3.19 0.09 0.82 -1.43 4.01
4 -1.52 3.19 -0.48 1.00 -2.00 4.19

101

5 -1.52 3.19 0.07 1.00 -1.45 4.19

6 -1.52 3.19 -1.11 -0.28 -2.63 2.91
7 -1.52 3.19 -0.65 -0.50 -2.17 2.69

Fall

102
8 -1.52 3.19 -0.07 1.00 -1.59 4.19

9 -1.52 3.19 0.53 -0.42 -0.99 2.76
10 -1.52 3.19 -0.03 -1.50 -1.55 1.69
11 -1.52 3.19 1.57 -0.41 0.05 2.77
12 -1.52 3.19 0.32 -2.32 -1.20 0.87

103

13 -1.52 3.19 0.94 -0.43 -0.58 2.75

14 -1.52 3.19 0.20 -0.08 -1.32 3.11
15 -1.52 3.19 -0.06 -0.43 -1.57 2.76
16 -1.52 3.19 -1.76 0.92 -3.27 4.11

Spring

104

17 -1.52 3.19 -0.82 0.94 -2.33 4.12

To mimic the DLM test structure, students were randomly assigned a combination of the simulated
testlets. Following the test administration design for the instructionally embedded DLM testing
model (for details see Chapter 4 of DLM Consortium, 2016), students were assigned testlets from
both the instructionally embedded and spring pools. During spring assessments, students were
randomly assigned only one testlet. For instructionally embedded assessments, students had a a 90%
chance of taking only one testlet and a 10% chance of taking both testlets. This is consistent with the
reported usage of the instructionally embedded assessment window (Clark, Thompson, & Karvonen,
2019). The resulting probabilities for each possible combination of assigned testlets can be seen in
Table 2, along with the total number of students actually simulated to have that combination. In total,
1,700 students were simulated, which is consistent with the total number of students that test on a
single attribute in a given year from states participating in the instructionally embedded assessment
model (see Chapter 7 of DLM Consortium, 2016).
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Table 2. Number of Simulated Students Assigned to Each Testlet Combination

Testlet Combination Probability n

101, 103 0.203 361
101, 104 0.203 356
102, 103 0.203 358
102, 104 0.203 322

101, 102, 103 0.045 68
101, 102, 104 0.045 68
101, 103, 104 0.045 83
102, 103, 104 0.045 61

101, 102, 103, 104 0.010 23

3.3. Model Estimation
The models are estimated in R version 3.6.1 (R Core Team, 2019) using the rstan package interface
(Guo, Gabry, & Goodrich, 2019) to Stan (Carpenter et al., 2017), which utilizes Markov chain Monte
Carlo (MCMC) and the Hamiltonian Monte Carlo (HMC) algorithm to efficiently transition between
draws of the posterior distribution (Betancourt & Girolami, 2013; Neal, 2011). Specifically, Stan
utilizes the No-U-Turn sampler (NUTS; Hoffman & Gelman, 2014) to dynamically choose a step size
and leap trajectory for the HMC algorithm in order to ensure efficient estimation (Betancourt, Byrne,
& Girolami, 2015). A complete description HMC with NUTS can be found in Hoffman and Gelman
(2014). For a less technical introduction to MCMC and HMC, see McElreath (2015).

The Stan code for all models can be found in the online repository for this report2. The models were
estimated with four chains, each with 2,000 iterations. The first 1,000 iterations of each chain were
discarded for warm-up, leaving a total of 4,000 retained iterations that made up the posterior
distributions. There were also several settings specific to NUTS (Hoffman & Gelman, 2014) used by
Stan. First, the adaptive threshold was set to 0.99 to avoid divergent transitions (Betancourt, 2017a).
Secondly, the maximum tree depth, which determines how far the algorithm can go before making a
U-turn (Betancourt, 2017b), was set to 15. These are both more conservative than the values
suggested by the Stan Development Team (2019c). The implications of these setting are discussed in
the following sections, along with diagnostics to assess their impact.

After estimating the model but before the parameters can be analyzed and inferences can be made,
the model is checked to ensure the estimation process completed in an appropriate manner. This
diagnostic information is critical to MCMC estimation, as without proper estimation, no valid
inferences can be made. Checks include evaluating convergence, efficiency of the sampler, and
parameter recovery. Each check is described in detail below using the estimated partial equivalency
model as an example, as this was the true data-generating model.

3.3.1. Convergence
A check of convergence evaluates whether the MCMC chain successfully found the high density area
of the posterior distribution and stayed there. When multiple chains are estimated, this can be

2https://github.com/atlas-aai/bayes-concept
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checked by verifying that each chain is drawing estimates from the same parameter space. For a
single chain, this is checked by verifying that the parameter is sampled from roughly the same area at
the beginning of the chain (after warm-up) as it is at the end of the chain. This is commonly assessed
through trace plots. An example of a trace plot is shown in Figure 4.

−2.5

−2.0

−1.5

−1.0

0 250 500 750 1000

Iteration

λ 0

Chain 1 2 3 4

Figure 4. Trace plot for the attribute-level intercept λ0.

Figure 4 shows the trace plot for the attribute-level intercept, λ0, and looks the way a trace plot is
expected to look. The draws appear to be coming from a stable distribution (i.e., the plot is relatively
horizontal with no large upward or downward swings), and all four are mixing well (as evidenced by
the overlap of the four colors). However, there is no empirical method that uses visual inspection
alone to determine how poor a trace plot must be to conclude convergence was not met.
Additionally, when there are many parameters, it is impractical to look at each individual trace plot.

To address these shortcomings of evaluating trace plots directly, the R̂ statistic can be used to
evaluate convergence (Brooks & Gelman, 1998; Vehtari, Gelman, Simpson, Carpenter, & Bürkner,
2019). The R̂ statistic is also known as the potential scale reduction (Gelman et al., 2013) and is a
measure of how much variance there is between chains relative to the amount of variation within
chains. Gelman and Rubin (1992) suggest that in order to conclude that the model has successfully
converged, all R̂ values should be less than 1.1. These results can be summarized, as in Figure 5, to
demonstrate the R̂ values for the estimated parameters. In the estimated partial equivalency model,
all values are below 1.1, indicating that the model converged.
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Figure 5. R̂ values for the estimated parameters in the partial equivalencymodel. Dotted line represents
the suggested cutoff by Gelman and Rubin (1992).

3.3.2. Efficiency
A second check of the MCMC estimation is the efficiency of the sampler, which verifies that the
algorithm adequately sampled the full posterior distribution. There are several ways this can be
examined. The first is by examining the effective sample size. This diagnostic takes into account the
autocorrelation (or anticorrelation) within chains to determine the effective number of independent
draws from the posterior. If the chain is slow moving, the draws will be highly autocorrelated, and
effective sample size will be well below the total number of retained iterations (Geyer, 2011).
Conversely, if the chain is moving quickly, it is possible for the draws to be better than independent,
or anticorrelated (Kroese, Taimre, & Botev, 2011). In this scenario, the effective sample size is actually
larger than the true sample size.

There are two types of effective sample size that can be used to evaluate the efficiency of the location
and scale of the posterior distributions. The sampling efficiency of the location (e.g., mean or median)
can be assessed with the bulk effective sample size. Similarly, the scale can be assessed through tail
effective sample size. This can be useful for diagnosing problems with mixing due to posterior
samples having different scales across chains (Vehtari, Gelman, Simpson, et al., 2019). For both
measures, the Stan Development Team (2019a) recommend an effective sample size greater than or
equal to the number of chains multiplied by 100.

The effective sample size for all parameters in the model can be summarized, as in Figure 6. Because
the model was estimated with four chains, the effective sample size should be above 400. Figure 6
shows that all parameters in the estimated partial equivalency model have both a bulk and tail
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effective sample size above this threshold.
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Figure 6. Effective sample size for each estimated parameter. Dotted line represents the suggested
cutoff by Stan Development Team (2019a). ESS = effective sample size.

There are also measures of efficiency that are exclusive to NUTS (Hoffman & Gelman, 2014). For
example, the Bayesian factor of missing information gives an estimate of how well the sampler
adapted and explored the posterior distribution. The Bayesian factor of missing information
generally ranges from zero to one, with zero and one representing poor and excellent estimation,
respectively. This is calculated for each chain overall, rather than each individual parameter
(Betancourt, 2016).

The Bayesian factor of missing information values for this example are shown in Table 3 and indicate
that the sample was able to adequately visit the posterior distributions. Additionally, Table 3 shows
the mean acceptance rate for each chain. As expected, these values are very close to the 0.99 adaptive
threshold that was specified during the model estimation. As mentioned previously, a target
acceptance rate this high is needed to prevent divergent transitions.

The concern with setting the target acceptance rate this high is that for parameters with wider
posteriors, the sampler will not be able to move fast enough. When using NUTS, at each iteration, the
sampler looks for a place to “U-Turn” in a series of possible branches. If the sample is terminating
before the maximum possible tree depth (which was specified to be 15), then the algorithm is able to
adequately find good values for the next iteration of the chain, despite the small steps being enforced
by the high target acceptance rate. Bumping up against the maximum allowed tree depth, or going
beyond it, indicates that the step size is too small (Stan Development Team, 2019c; Stan Development
Team, 2019b). Because the maximum tree depth values in Table 3 are all below the maximum
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specified, and the Bayesian factor of missing information values are all close to one, there is strong
evidence that in this model, the sampler was able to adequately sample the posteriors.

Table 3. Diagnostic Statistics for the No-U-Turn Sampler

Chain BFMI Mean Acceptance Rate Max Tree Depth

1 0.993 0.991 7
2 1.008 0.991 8
3 1.048 0.994 8
4 1.018 0.993 8

Note: BFMI = Bayesian factor of missing information.

3.3.3. Parameter Recovery
In addition to having diagnostics to ensure that the model is estimated properly, it is also important
to establish that the model as defined in the Stan code is able to accurately recover the true parameter
values. Otherwise, a model may estimate well but be miss-specified, leading to incorrect parameter
estimates. Figure 7 shows the true (from Table 1) versus estimated item parameter values, indicating
successful parameter recovery for the partial equivalency model with the simulated data.
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Figure 7. Parameter recovery from the example partial equivalency model with simulated data.

It is also possible to examine the accuracy of the respondent classifications as a master or non-master.
For this analysis, respondents were classified as masters if the median of the posterior distribution for
the probability of mastery was greater than or equal to 0.5. This threshold places respondents in their
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most likely class; however, any threshold can be used in practice to facilitate stakeholder
understanding of scores (Bradshaw & Levy, 2019). Respondent classification results for the partial
equivalency model are summarized in Table 4. In total, 99% of the simulated students were correctly
classified as masters or non-masters. This is not surprising, given that the data was simulated to fit
the model, and all of the items are fairly discriminating (Table 1).

Table 4. Respondent Classification Accuracy

True Mastery Estimated Mastery n

0 0 676
0 1 10
1 0 8
1 1 1,006

3.4. Evaluating Model Fit
Model fit can be assessed in both an absolute and relative sense. Absolute fit is used to evaluate
whether or not the estimated model adequately reflects the observed data and is a prerequisite for the
evaluation of relative fit. Relative fit compares the fit of two more models that all show adequate
absolute model fit (Chen et al., 2013; Sen & Bradshaw, 2017). In this document, methods are
presented for assessing absolute and relative fit through posterior predictive model checking and
information criteria, respectively. In order to demonstrate how these methods work in practice, both
the fungible and non-fungible models were estimated on the same data used to estimate the partial
equivalency model in the previous section. Thus, there are a total of three models to compare and
calculate posterior predictive checks for. As described previously, the partial equivalency model was
the true data generation model.

3.4.1. Absolute Fit
Posterior predictive model checks are used to assess the absolute fit of a specific model to the
observed data. Posterior predictive checks involve simulating replications of the data using the
values of the posterior distributions and then comparing the replicated data sets back to the observed
data (Gelman et al., 2013). As explained in the model estimation section, a total of 4,000 iterations
were retained from the MCMC estimation. Thus, 4,000 replicated data sets can be simulated, one for
each iteration, using the current values of the parameters at each iteration. The process for simulating
a replicated data set for a single iteration is as follows:

1. Randomly assign the first respondent to the master or non-master class, with probability equal
to the current value of the respondent’s probability of attribute mastery.

2. For the first item the respondent takes, simulate a response using the current values of the item
parameters and the mastery status that was simulated in step 1.

3. Repeat step 2 for all items the respondent tested on.
4. Repeat steps 1–3 for all respondents.

This process is repeated for each iteration in the chain. Because the replicated data sets are simulated
from the current values of the parameters, these data sets represent what the data would be expected

Page 15



Bayesian Modeling for DCMs
Dynamic Learning Maps
Research Report #19-01

to look like if the specified model were true. Therefore, summaries of these data sets can then be used to
look for systematic differences in the characteristics of the observed data and the replicated data sets,
often through visualizations (Gelman & Hill, 2006).

3.4.1.1. Model-Level Fit

At the model level, posterior predictive checks can be calculated for the raw score distribution. This
is accomplished by counting the number of respondents at each raw score point in each of the 4,000
replicated data sets. Thus, a distribution is derived from the number of respondents expected to be
present at each raw score point in the observed data. Figure 8 shows the distribution of expected raw
scores along with the number of observed students in the simulated data.
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Figure 8. Posterior predictive model check for the raw score distribution.

Figure 8 shows a bimodal distribution, which is a result of the mixture of raw score distributions for
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masters and non-masters. Additionally, very few students are expected to have a high raw score due
to the fact that relatively few students test on more than two testlets (Table 2). Finally, the expected
distribution for fungible model shows some deviations from the observed scores. Specifically, the
fungible model overestimates the number of students with a raw score of six and seven and
underestimates the number of students with a raw score of four and nine.

Similar to the examination of trace plots above (Figure 4), this visualization alone is insufficient for
determining if the amount of misfit in the distribution is significant. Rather, Béguin and Glas (2001)
suggest a χ2 discrepancy measure can be calculated according to equation (4).

χ2

obs =
S∑

s=0

[ns − E(ns)]2

E(ns)
(4)

In equation (4), s represents the score point, ns is the number of respondents at score point s, and
E(ns) is the expected number of respondents at score point s, calculated as the average over all of the
replicated data sets. Like the χ2 tests that are used to assess model fit when the
expectation-maximization algorithm is used, the χ2

obs statistic does not follow a true χ2 distribution.
However, when using posterior predictive model checks, none of the distributional assumptions are
required. This is because the reference distribution can be generated directly from the replicated data
sets, similar to a parametric bootstrap. Using the same definition of E(ns) as above, a χ2

rep can be
computed for each of the replicated data sets. The 4,000 χ2

rep values then make up the reference
distribution to compare back to χ2

obs. A posterior predictive p-value (ppp) can then be calculated as
shown in equation (5).

ppp = P (χ2

rep ≥ χ2

obs | ns) (5)

Equation (5) says that the posterior predictive p-value is the proportion of replicated data sets whose
χ2

rep value is greater than the χ2

obs value from the observed data. Posterior predictive p-values close to
zero indicate poor model fit (a cutoff of .05 could be used, for example), whereas values very close to
one may indicate possible over-fitting. The χ2

obs distributions and posterior predictive p-values for
the fungible, partial equivalency, and non-fungible model are shown in Table 5 and visualized in
Figure 9. As expected, given the distributions in Figure 8, the fungible model shows poor model fit,
with a posterior predictive p-value of less than .05. In contrast, both the partial equivalency and
non-fungible models show acceptable fit to the simulated data.

Table 5. χ2

obs Values and Summaries of χ2
rep Distributions

Model χ2

obsχ2

obsχ2

obs χ2
repχ2
repχ2
rep Mean χ2

repχ2
repχ2
rep 5% χ2

repχ2
repχ2
rep 95% ppp

Fungible 57.38 17.98 8.86 29.96 0.001
Partial Equivalency 14.30 17.97 8.64 30.28 0.669
Non-fungible 14.04 17.74 8.50 29.99 0.681

Note: ppp = posterior predictive p-value.
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Figure 9. Posterior predictive model check for χ2
rep distributions and χ2

obs values. Dashed lines repre-
sent the observed χ2

obs value.

3.4.1.2. Item-Level Fit

Posterior predictive checks can also be used to assess item-level fit by creating posterior summaries
of item p-values. This is accomplished by calculating a p-value for each item in each of the 4,000
replicated data sets. This provides a distribution for plausible item p-values if the model fits. The
item p-values from the observed data can then be compared to these distributions. Figure 10 shows
an example of these comparisons for the fungible, partial equivalency, and non-fungible models. This
shows the assumptions of the fungible model. That is, each item has the same expected p-value in the
fungible model, but different expectations for the partial equivalency and non-fungible models.
Because the simulated data was not fungible (i.e., was generated from the partial equivalency model),
Figure 10 correctly shows that the fungible model was unable to successfully recover the observed
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item p-values.
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Figure 10. Posterior predictive model check for overall item p-values.

One limitation of using the overall item p-values is that this method overlooks an important aspect of
the model. As shown in equation (3), the model actually defines two conditional probabilities, not one
unconditional probability. In other words, the model defines a probability of non-masters providing
a correct response, and a separate probability of masters providing a correct response. Thus, using a
single p-value may miss important characteristics of the data. To examine this, posterior distributions
for p-values conditional on mastery status can be estimated, similar to the overall p-value method.

This process is slightly complicated by that fact that mastery status is unobserved. Practically, this
means there is not an observed p-value for each mastery class to compare back to the posterior
distributions readily available in the data. To calculate the p-value of an item for each mastery class, a
procedure similar to that described by Sinharay and Almond (2007) is followed. When using a
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Bayesian MCMC estimation, a mastery classification can be made at each iteration of the Markov
chain, as described above. Specifically, the probability of mastery is dichotomized at .5, although
other thresholds can also be used. Using these classifications, a class-level p-value can be calculated
for each iteration using the observed item responses and the respondents who were assigned to each
class in that iteration. This results in a series of class-level p-values (one per item per iteration). The
observed class-level p-values are then defined as the median for each class and item across all
iterations (see Sinharay & Almond, 2007, for full details).

Similarly, an expected class-level p-value can be calculated by following the same procedure, but with
item responses generated in the replicated data sets rather than those in the observed data. In this
way, a distribution of expected conditional p-values can be estimated to compare the observed
conditional p-values to. This comparison is shown in Figure 11.
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Figure 11. Posterior predictive model check for conditional item p-values.
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Much like the overall p-values (Figure 10), the fungible model shows a consistent expectation across
items for each mastery class, which often misses the observed value. Additionally, the partial
equivalency and non-fungible models successfully recover the observed conditional p-values for both
classes. However, Figure 11 shows that the fungible model tends to miss p-values for the master class
more often and by a greater magnitude than for the non-master class. Thus, it appears that there is
more non-fungibility in item parameters among the master than non-master class for the data that
was simulated for this document. This can also be seen when examining the true parameter values
that were used to simulate the data in Table 1, which show wider variability for λ1,1 + bi,1,1 than for
λ0 + bi,0.

3.4.2. Relative Fit
Relative fit is assessed through the comparison of models to determine if one model has relatively
better fit than another. Because there is no direct comparison to the data with these methods, it is
important that models show adequate absolute model fit before they are compared to each other to
determine the best fitting model (Sen & Bradshaw, 2017). Therefore, the fungible model is excluded
from these analyses, as adequate absolute model fit was not demonstrated in this example data.

In this document, three methods of comparison are demonstrated: Pareto smoothed importance
sampling leave-one-out cross validation (PSIS-LOO; Vehtari, Gelman, & Gabry, 2017; Vehtari,
Gelman, & Gabry, 2019), the widely applicable information criterion (WAIC; Watanabe, 2010), and
Bayesian stacking (Yao, Vehtari, Simpson, & Gelman, 2018). Both the PSIS-LOO and WAIC provide
point estimates for the out-of-sample prediction accuracy using the log-likelihood posterior
distribution. However, although the PSIS-LOO and WAIC are asymptotically equivalent, Vehtari
et al. (2017) found that the PSIS-LOO is more robust than the WAIC when weak priors are used and
when there are influential observations (e.g., a student providing an incorrect response despite a high
probability of success). When comparing these indices in practice, a difference between models is
considered significant if the absolute difference in the indices is greater than 2.5 times the standard
error of the difference (Bengio & Grandvalet, 2004).

Additionally, model comparisons can be made using model stacking or averaging. These methods
work by assigning weights to each model in the comparison that correspond to the weight that
should be given to predictions from each model. Thus, the more weight assigned to a model, the
more preferred it would be in isolation. This method has the benefit of being less prone to over-fitting
(Piironen & Vehtari, 2017) and also allowing for more refined inferences (Vehtari & Ojanen, 2012). For
example, because the weights are on a probability scale, they are much easier to interpret and
compare across models than the PSIS-LOO or WAIC. The Bayesian stacking method described by Yao
et al. (2018) is implemented.

Table 6 shows that the PSIS-LOO and WAIC fit indices are very similar for both the partial
equivalency and non-fungible models. This is expected, as the PSIS-LOO and WAIC are
asymptotically equivalent (Vehtari et al., 2017). In the model comparisons, both the PSIS-LOO and
WAIC prefer the partial equivalency model, as indicated by the zero in the model comparison (the
difference between that model and the preferred model). However, the difference in PSIS-LOO and
WAIC of -0.3 between the partial equivalency and non-fungible model is less than 2.5 times the
standard error of the difference (1.5). Thus, using the criteria outlined by Bengio and Grandvalet
(2004), these models fit equally well. In contrast, Bayesian stacking shows a moderate preference for
the partial equivalency. In this comparison, nearly two-thirds of the weight is given to the partial
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equivalency model. Given the totality of these analyses, the partial equivalency model appears to be
the model best suited to this simulated data. This data was generated from the partial equivalency
model, so this finding is consistent with what is expected.

Table 6. Relative Fit Indices and Model Comparisons

Fit Indices Model Comparisons

Model PSIS-LOO WAIC PSIS-LOO WAIC Bayesian Stacking

Partial Equivalency -8,005.0 (78.5) -8,004.9 (78.5) 0.0 (0.0) 0.0 (0.0) 0.6315
Non-fungible -8,005.3 (78.2) -8,005.2 (78.2) -0.3 (1.5) -0.3 (1.5) 0.3685

Note: PSIS-LOO = Pareto smoothed importance sampling leave-one-out cross validation; WAIC =
widely applicable information criterion. Parentheses represent the standard error.

4. Discussion
This document presents a Bayesian approach to the estimation and evaluation of DCMs and latent
class analyses. As a proof of concept, a simulated data set mimicking the test design of the DLM
assessment was used to demonstrate these methods in practice. The Bayesian framework offers
several advantages for model estimation and evaluation. First, the ability to place priors on item-level
parameters provides a conceptual framework that allows for a straightforward definition of various
equality constraints. This allows for a clear delineation of how various models differ from each other.

Following the model definition, there are several existing and well-tested software programs for
implementing these models. Specifically, the Stan ecosystem provides software for estimating and
evaluating Bayesian models in a variety of interfaces. This proof of concept utilizes the R interface
(Guo et al., 2019), but other interfaces exist for Python (PyStan; Stan Development Team, 2018b),
MATLAB (MatlabStan; Stan Development Team, 2017a), Julia (Stan.jl; Stan Development Team,
2018c), Stata (StataStan; Stan Development Team, 2017b), and the command-line terminal (CmdStan;
Stan Development Team, 2018a). Thus, practitioners have the flexibility to work in the environment
they are most comfortable with. In addition to the flexibility in interface, the Stan ecosystem also has
built-in measures for evaluating the estimation process. This includes measures of model
convergence, efficiency, and checks on sampler performance. However, access to this ecosystem
currently requires users to be familiar with the Stan language in order to write the Stan code for each
model. Future work should focus on developing a high-level interface to Stan for estimating DCMs,
similar to the rstanarm (Gabry & Goodrich, 2019) and brms (Bürkner, 2017; Bürkner, 2018) R
packages that estimate nonlinear and multilevel regression models.

Additionally, the Bayesian framework facilitates the evaluation of absolute model fit through
posterior predictive model checks. This offers a significant improvement over existing model fit
measures that rely on unmet assumptions of an asymptotic χ2 distribution or limited information
indices that don’t fully capture the complexity of the data. With posterior predictive model checks,
replicated data sets from the posterior distributions can be generated and compared to the observed
data. This gives a direct and flexible scheme for evaluating model fit. In this document, the raw score
distribution, item p-values, and conditional item p-values were examined. However, other
characteristics of the data could be calculated and compared. Thus, researchers and practitioners are
able to evaluate model based on characteristics they identify as important.
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When there are competing models that show adequate absolute model fit, direct comparisons can be
made using information criteria. Although using information criteria to compare models is not
exclusive to a Bayesian estimation process (e.g., Sen & Bradshaw, 2017), some indices, such as the
PSIS-LOO, are. In this document, the PSIS-LOO and WAIC were used, as they are integrated into the
Stan ecosystem via the loo R package (Vehtari, Gelman, Gabry, & Yao, 2019) and perform well under
a variety of conditions (Vehtari et al., 2017). However, as discussed for posterior predictive model
checks, practitioners could use other information criteria for their comparisons, such as the Akaike
information criterion (AIC; Akaike, 1973), Bayesian information criterion (BIC; Schwarz, 1978), or
deviance information criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde, 2002).

In summary, this document provides a practical guide to estimating and evaluating DCMs in applied
settings. Although the models described represent a simplified one-attribute use case, they are
generalizable to additional attributes. For example, Thompson and Nash (2019) used an expanded
version of this framework for evaluating map structures and attribute hierarchies in multivariate
extensions of these models. Future work will focus on further developing and improving the
Bayesian framework for estimating and evaluating DCMs, including extending the methods for
evaluating item-level misfit, as well as illustrating how the framework can be implemented in
applied and operational settings.
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