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Abstract

As diagnostic classification models become more widely used in operational assessments, it is
important to be able effectively evaluate model fit. In this paper, we examine a new method for
evaluating model fit using Bayesian model estimation and posterior predictive model checks in the
context of the Dynamic Learning Maps® Alternate Assessment System. Our findings suggest that
posterior predictive model checks are a methodologically sound way to estimate model fit. However,
more work is needed to understand the sensitivity and specificity of these indices. Additionally, more
work is needed to evaluate practical significance of model misfit, compared to the statistical
significance.
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1. Introduction

Assessing model fit is a crucial aspect for any psychometric program. Model fit has important
implications for the validity of inferences that can be made from test results. If the model used to
calibrate and score the assessment does not fit the data well, results from the assessment may not
accurately reflect what students know and can do.

The Dynamic Learning Maps® (DLM®) Alternate Assessment System is based on an interconnected
learning map model of discrete skills. The connections between skills indicate the unidirectional
ordering of skill acquisition. Nodes in the DLM maps are measured by alternate content standards
(Essential Elements; EE), which are of reduced breadth and complexity compared to grade-level
college- and career-ready standards. In order to provide all students access to grade-level academic
content, each EE is associated with linkage levels which represent the alternate content standard at
varying levels of depth, breadth, and complexity. In English language arts (ELA) and mathematics,
there are total of five linkage levels for each EE: three precursor linkage levels that lead to the target
level and one successor linkage level for students going beyond the target. In science, there are three
linkage levels for each EE, two precursor linkage levels and the target level. The availability of
multiple skill levels ensures all students are provided access to grade-level content in a way that is
most appropriate for the individual student.

One of the key assumptions of the DLM assessment system is that items measuring the same linkage
level are fungible, or exchangeable. In this type of model, the item parameters are held constant for
all items measuring each linkage level. Thus, the assumption is that a master of the linkage level will
have the same probability of providing a correct response to all items measuring that linkage level.
Similarly, a non-master would also have the same probability of providing a correct response to all
items. Becuase this relationship between the items is assumed by the model, evidence of the degree
to which a fungible model fits the data must be evaluated. In addition, the fit of the fungible model
should be compared to a non-fungible model to compare their relative fit.

The paper that follows builds on previous work evaluating the model fit of the DLM assessments. An
initial investigation using indices based on limited information model fit indices (e.g.,
Maydeu-Olivares & Joe, 2006; Maydeu-Olivares & Joe, 2014) found insufficient evidence of model fit
for the fungible model. However, when examining student score distributions, no significant
differences were observed between the fungible and non-fungible scoring models. This suggested
that either the model misfit was not practically significant, or the methods were overly sensitive. Due
to the sparsity of the data resulting from the DLM administration design (i.e., students typically take
testlets that measure only on elinkage level per EE), as well as the potential for over-flagging model
misfit, new methods for assessing model fit were developed. Specifically, rather than estimating the
model using and expectation-maximization algorithm (Bartholomew, Knott, & Moustaki, 2011), a
new Bayesian model estimation was proposed that would allow the evaluation of model fit using
posterior predictive model checks (e.g., Gelman et al., 2014). An initial proof of concept for this
methodology using simulated data indicated that these methods were more robust to the DLM data
constraints and provided a methodologically-sound evaluation of model fit.

The present paper builds on this research, providing model fit results for the DLM assessment using
the Bayesian approach to model estimation and posterior predictive model checks. The following
sections provide a brief description of the models that were estimated and the methodology used to
evaluate model fit using both absolute and relative indices. Results are summarized for the 1,377
linkage levels measured by the assessment, which includes 740 linkage levels for English language
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arts (ELA) based on 148 EEs, 535 linkage levels for mathematics based on 107 EEs, and 102 linkage
levels for science based on 34 EEs'.

2. Description of Models

DLM assessments are currently calibrated and scored at the linkage level using a fungible log-linear
diagnostic classification model (LCDM; Henson, Templin, & Willse, 2009), which in the case of a
single attribute is equivalent to a fungible latent class model (Bartholomew et al., 2011). Thus, for
each linkage level, it is important to assess how well the model fits the data. For each linkage level,
three types of parameters are estimated: conditional probabilities of answering the items correctly for
non-masters, conditional probabilities of answering the items correctly for masters, and a structural
parameter that defines the base rate of mastery (i.e., the probability of randomly drawing a master
from the population). Conditional probabilities represent the probability of an individual providing a
correct response to the item, given that the model has classified the individual in the given mastery
class.

To evaluate model fit for DLM assessments, five models were fit to each linkage level: fungible,
equivalent slopes, partial equivalency with fixed variance, partial equivalency with estimated
variance, and non-fungible. The fungible model assumes each item measures the linkage level
equivalently, consistent with the conceptual approach to item writing. The equivalent slopes model
assumes that the items are independent of each other for non-masters, but the increase in log-odds of
providing a correct response is equivalent for masters on all items measuring the linkage level. The
partial equivalency model does not assume equivalent parameters for all items measuring the
linkage level, but rather that all item parameters come from a distribution of possible item
parameters. Thus, there is some level of fungibility, or equivalency, among the items, but the amount
can be estimated and varies between linkage levels. Finally, the non-fungible model makes no
assumptions about equivalent item parameters, and therefore provides the most flexible estimation.

All of the models are defined similarly to a latent class model with random effects and two possible
classes: masters and non-masters. Under all models, the probability of respondent j providing a
correct response to item i is defined as seen in equation (1), where «; is a binary indicator of the
mastery status for respondent j.

exp(Bo + boi + (B1 + b1:)ej)
1+ exp(Bo + boi + (B1 + bui)aj)

P(yji = l]ay) = (1)

Equation (1) shows the similarity to multilevel models. In this model, 5y and 3; represent the
attribute-level intercept and main effect respectively. These are akin to the weighted average
intercept and main effect for all items measuring the linkage level (i.e., the fixed effects in the
multilevel model literature). In addition to the attribute-level parameters, there are also item-level
intercepts (bg;) and main effects (b;). These parameters represent each item’s deviation from the
attribute-level effect. Thus, the full intercept for item one would be calculated as 3y + bo;. This is
similar to the estimation of random intercepts and slopes for each item. The difference between the
proposed models and multilevel models is the treatment of the variance of these item-level
parameters. In multilevel models, the variance of these random effects would be estimated. However,
the variance of the random effects can also be fixed to pre-specified values.

1Science has three linkage levels for each EE: Initial, Precursor, and Target
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If all item-level parameters are constrained to be zero, then all items will have parameters equal to
the attribute-level parameter (i.e., all of the by; and by; parameters in equation (1) would be zero).
This is mathematically equivalent to the fungible model. Alternatively, the item-level parameters can
be allowed to vary freely with no constraints. This is mathematically equivalent to the non-fungible
model. The equivalent slopes and partial equivalency models fall in the middle, using a mix of
constrained and free intercepts and slopes:

* Fungible. In the fungible model, all item-level effects are fixed to 0. Thus, item level effects are
not estimated.

* Equivalent Slopes. In the equivalent slopes model, the item-level slopes are fixed to be 0, but
the intercepts are allowed to vary freely. Thus, we estimate no item-level main effects, only the
attribute-level main effect. In contrast, we estimate no attribute-level intercept, but rather only
the item-level intercepts that are allowed to vary from one another.

* Partial Equivalency—Fixed Variance. In the partial equivalency model, both attribute-level and
item-level parameters are estimated. In this model, the variance of the item-level effects around
the attribute-level effect is fixed. Specifically, the item-level parameters are defined to come
froma N (= 0,0 = 1) distribution.

¢ Partial Equivalency-Estimated Variance. This is similar to the partial equivalency model with
fixed variance, except that the variance of the item-level effects is estimated from the data. This
is a hierarchical model where the variance of the prior for the item-level effects is another
estimated parameter. Thus, the prior for both the item-level intercepts and main effects are
defined as N'(u = 0,0 = v), where v is an estimated parameter.

* Non-fungible. In the non-fungible model, all item-level effects are allowed to vary freely. Thus,
attribute-level effects are removed from the model and only the freely estimated item-level
effects are included.

In addition to inclusion/exclusion of the attribute- and item-level parameters, prior distributions
must also be defined for all included parameters and the structural parameter that represents the
overall base rate of mastery. For intercept parameters, a N'(u = 0,0 = 2) prior is used. The prior was
chosen as >99 percent of this distribution encompasses the plausible values for these parameters.
Specifically, 99 percent of this distribution covers the log-odds range of -5.15 to 5.15, which covers
nearly all of the probability scale when other parameters are equal to zero, as seen in Figure 1. The
main effect parameters use a lognormal prior, Lognormal(y = 0,0 = 1). These parameters are
constrained to be positive to ensure monotonicity of the model. Similar to the prior for intercepts, this
distribution was chosen as >99 percent of the distribution covers the range of plausible values.
Specifically, this covers the log-odds range of 0 to 10.24. An upper end of ~10 was desired as a main
effect of 10 would allow for an estimated probability of success near 1.0 in the extreme case where the
intercept was -5 (the lower end of the intercept prior distribution). The lognormal distribution also
ensures that all main effect parameters are positive. In the partial equivalency models where both
attribute- and item-level effects are estimated for the same parameters (e.g., attribute- and item-level
slope), the attribute-level effects use the prior distributions specified here, and the item-level effects
use the fixed or estimated variance priors defined above. Finally, the structural parameter, 7 is
defined with a flat beta distribution B(aw = 1, 5 = 1).
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Figure 1. Log-odds to probability conversion.

3. Model Fit Calculation Background

To provide evidence of model fit for competing models (e.g., fungible, equivalent slopes, partial
equivalency with fixed variance, partial equivalency with estimated variance, and non-fungible),
model fit evidence can be provided in the form of both absolute and relative fit indices. Absolute fit
indices evaluate how well the model fits the data. Relative fit indices compare models to each other,
and are only able determine if one model provides better fit to the data, relative to the fit provided by
the other model. Relative fit indices also make an assumption that the models in the comparison have
acceptable absolute fit.

3.1. Absolute Fit

Absolute fit is assessed through posterior predictive model checks. Posterior predictive checks
involve simulating replications of the data using the values of the posterior distributions, and then
comparing the replicated data sets back to the observed data (Gelman et al., 2014). Because the
replicated data sets are simulated from the current values of the parameters at each iteration of the
Markov Chain, these replicated data sets represent what the data would be expected to look like if the
specified model were true. Therefore, summaries of these data sets can be used to look for systematic
differences in the characteristics of the observed data and the replicated data sets, often through
visualization (Gelman & Hill, 2006).

For DLM data, there are two major posterior predictive checks that are implemented: item level
p-values and raw score distributions. For the item-level analysis, the p-value is calculated for each
item in each of the replicated data sets. This distribution is then compared to the p-values that were
actually observed (see Figure 2). Using this check, model fit at the item level can be assessed by
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looking at the percent of items that have an observed p-value outside of the expected interval.
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Figure 2. Example posterior checks for item-level p-values using simulated data.

N
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At the attribute-level, model fit is assessed using the raw score distribution. That is, in each replicated
data set the number of students at each raw score point can be counted. This is then compared to the
number that were actually observed at the score point (see Figure 3). Based on the expected number
of students at each score point, a x? statistic can be calculated to determine if there is a significant
amount of misfit. This x? is calculated for each replicated data set and the observed data set, meaning
that a posterior predictive p-value is calculated, rather than a traditional p-value. Thus, this test does
not rely on the asymptotic assumptions of the traditional x2, which was a major limitation of the
model fit analysis that used limited information tests of model fit, rather than posterior predictive
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model checks. Finally, unlike the item-level posterior checks, the attribute-level check captures a more
complex evaluation of the data. Thus, this check offers a more robust measure of overall model fit.
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Figure 3. Example posterior predictive model check for attribute-level raw score distributions using
simualted data.

3.2. Relative Fit

Relative fit is assessed through the comparison of models to determine if one model has relatively
better fit than another. For DLM, two methods of comparison are used: Pareto smoothed importance
sampling leave-one-out cross validation (PSIS-LOO; Vehtari, Gelman, & Gabry, 2017) and the widely
applicable information criterion (WAIC; Watanabe, 2010). Both measures provide point estimates for
the out of sample prediction accuracy using the log-likelihood posterior distribution. However,
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although the PSIS-LOO and WAIC are asymptotically equivalent, Vehtari et al. (2017) found that the
PSIS-LOO is more robust than the WAIC when weak priors are used (as is true for the models
utilized by DLM) and when there are influential observations (e.g., a student providing an incorrect
response despite a high probability of success).

4. Procedure for Evaluating Model Fit

4.1. Data

The estimation of the models used data from the 2015-2016 assessment windows and the 2016-2017
instructionally embedded window. Field test testlets and retired testlets from previous years are not
included.

4.2. Method

All models were estimated using Stan (Carpenter et al., 2017) using rstan (Stan Development Team,
2018) interface in R (R Core Team, 2018). Following the estimation, absolute fit was assessed using
item- and attribute-level posterior predictive model checks. Models that demonstrated acceptable
levels of absolute fit (less than 80% of linkage levels rejected for poor fit) were then compared using
the PSIS-LOO and WAIC.

5. Results

5.1. Convergence

Table 1 shows the convergence rates of the different models. Convergence was determined by the
Rhat statistic, which measures the within chain variance relative to the between chain variance. A
model was regarded to have converged if all Rhat statistics were less than 1.1 (Gelman et al., 2014).
All models converged at a high rate, with the exception of the partial equivalency with estimated
variances model. Because of this finding, the partial equivalency with estimated variances model is
excluded from further analyses in this paper. Interestingly, ELA linkage levels had a slightly lower
convergence rate than mathematics or science. This is due in large part to writing linkage levels. Of
the 50 ELA models that failed to converge across the fungible, equivalent slopes, partial equivalency
with fixed variance, and non-fungible models, 43 of the linkage levels were from writing EEs. This is
most likely due to how item identifiers are assigned to writing items. For scoring purposes, writing
items are scored at the option level. That is, each option is treated as its own item. For more
information on this approach, see Chapter 3 of the 2016-2017 Technical Manual Update—Integrated
Model (Dynamic Learning Maps Consortium [DLM Consortium], 2017). However, unlike item
identifiers, option identifiers change from year to year. Because the identifiers for options changes
from year to year, they appear as separate items in the calibration. The result is the appearance of
more items each with less data (i.e., only one year instead of three). Thus, the data matrix is far
sparser for models with writing data than for other models. For the purposes of this paper, all further
analyses are based only on the models that successfully converged (e.g., summaries of the partial
equivalency with fixed variances model for ELA Successor linkage levels are based on the 97.3% of
linkage levels that successfully converged).
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Table 1. Convergence Rates for All Models

Subject and Linkage Fungible  Equivalent Partial - Partial - Non-
Level (%)  Slopes (%) Fixed Var. Est. Var. fungible
(%) (%) (%)
English Language Arts
Initial Precursor 99.3 98.0 97.3 82.2 96.6
Distal Precursor 98.0 99.3 95.3 60.0 96.6
Proximal Precursor 100.0 100.0 95.9 65.1 98.0
Target 98.0 100.0 98.6 43.5 98.6
Successor 100.0 100.0 97.3 16.4 99.3
Mathematics
Initial Precursor 100.0 100.0 100.0 100.0 100.0
Distal Precursor 100.0 100.0 98.1 71.0 99.1
Proximal Precursor 99.1 100.0 100.0 72.6 100.0
Target 100.0 100.0 99.1 67.3 99.1
Successor 100.0 100.0 100.0 34.6 99.1
Science
Initial 100.0 100.0 100.0 76.5 100.0
Precursor 100.0 100.0 97.1 41.2 100.0
Target 100.0 100.0 100.0 2.9 100.0

5.2. Absolute Fit

For each linkage level, the percent of items that were flagged for misfit and the overall raw score
distribution fit for each model were calculated using the replicated posterior data sets. Table 2 shows
the average percent of items within a linkage level that were flagged for misfit for each model. For
example, for the ELA Initial Precursor level estimated with the fungible model, an average of 71% of
items were flagged for misfit. Table 3 shows the percentage of linkage levels that were flagged for
overall misfit using the raw score distributions. For example, approximately 55% of the Target
linkage levels for ELA were flagged for poor model fit to the observed raw score distribution when
using the fungible model.

Overall, these results show that none of the four models that were investigated and successfully
converged have acceptable levels of absolute fit. Table 2 shows consistently high percentages of items
flagged for model misfit across all subjects, linkage levels, and models. Given the poor results in
Table 2, it is unsurprising that Table 3 shows large proportions of linkage levels being flagged for
model misfit. Across subjects, linkage levels, and models, there is consistently higher than 50 percent
of linkage levels flagged for misfit. However, there is a clear trend of model fit improving as
fungibility is removed from the model, as would be expected. Further, the results here compare
favorably to the model fit results using the E-M algorithm that were in the initial model fit
investigation that utilized limited information model fit indices. Additionally, there is a clear pattern
of model fit increasing at the higher linkage levels (i.e., moving from Initial Precursor to Successor).
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Subject and Linkage Fungible (%) Equivalent  Partial — Fixed Non-fungible
Level Slopes (%) Var. (%) (%)
English Language Arts
Initial Precursor 70.5 67.2 61.5 49.9
Distal Precursor 75.3 77.1 68.1 51.3
Proximal Precursor 76.1 88.1 76.9 54.1
Target 70.8 89.8 80.6 52.0
Successor 55.7 61.3 55.8 25.4
Mathematics
Initial Precursor 82.0 77.5 69.6 66.5
Distal Precursor 80.7 79.3 59.4 40.4
Proximal Precursor 85.3 88.9 73.4 49.8
Target 81.4 70.7 73.0 415
Successor 42.0 25.8 25.8 15.8
Science
Initial 99.0 99.4 99.0 98.6
Precursor 84.9 56.4 44.8 28.7
Target 86.6 99.1 96.5 94.1

Table 3. Percent of Linkage Levels Flagged for Model Misfit

Subject and Linkage Fungible (%) Equivalent  Partial — Fixed Non-fungible
Level Slopes (%) Var. (%) (%)
English Language Arts
Initial Precursor 70.5 67.2 61.5 49.9
Distal Precursor 75.3 77.1 68.1 51.3
Proximal Precursor 76.1 88.1 76.9 54.1
Target 70.8 89.8 80.6 52.0
Successor 55.7 61.3 55.8 25.4
Mathematics
Initial Precursor 82.0 77.5 69.6 66.5
Distal Precursor 80.7 79.3 59.4 40.4
Proximal Precursor 85.3 88.9 73.4 49.8
Target 81.4 70.7 73.0 415
Successor 42.0 25.8 25.8 15.8
Science
Initial 99.0 99.4 99.0 98.6
Precursor 84.9 56.4 44.8 28.7
Target 86.6 99.1 96.5 94.1
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5.3. Relative Fit

Relative fit compares two competing models to determine which model provides better fit, relative to
the other. However, one of the assumptions of these methods is that the models being compared have
acceptable levels of absolute model fit. Because none of the fungible, equivalent slopes, or partial
equivalency models showed sufficient absolute model data fit, the relative fit analyses were not
estimated.

6. Summary of Model Fit Analyses

In this paper, five models were estimated for the DLM alternate assessment with varying levels of
fungibility. Of these models, all except the partial equivalency with estimated variance showed high
convergence rates. However, the remaining four models showed poor fit to the data using posterior
predictive model checks. There are several reasons this may be the case. First, it is possible that
fungibility is a poor assumption for this data, and any attempt to add fungibility results in poor fit to
the underlying data. Although this could certainly be the case for the fungible, equivalent slopes, and
partial equivalency with fixed variance models, this explanation is insufficient for the non-fungible
model.

Alternatively, because students take a small number of items per linkage level, it is likely that there is
a large degree of uncertainty in the resulting posterior probabilities of mastery. This would result in
large differences between the replicated data sets used for the posterior predictive checks. Without a
clear picture of what true model-fitting data looks like, it may be difficult for the observed data to
match the distribution of posterior data sets, leading to poor model fit.

It is also important to note that these analyses cannot answer the question of practical significance.
Given the high flagging rate for the non-fungible model, it is possible that these methods are too
sensitive to small violations of model fit. Thus, although there is statistically significant model misfit,
the practical implications may be negligible. This hypothesis is supported by preliminary analyses
using the 20162017 operational assessment, which showed minimal differences between student
assessment scores derived from the fungible and nonfungible models. Further work is needed to
investigate the potential impacts of different scoring models.

Several simulation studies are planned to investigate these potential causes in order to further refine
the methodology for evaluating the model fit of the DLM system. Specifically, current work is
focused on evaluating the properties of the various models and the model fit indices. For example,
data can be simulated from the non-fungible model and then estimated with both the fungible and
non-fungible model. The agreement between the mastery profiles from the two models can provide
some measure of the practical significance of model misfit for this type of assessment. In another
study we are examining the sensitivity and specificity of various model fit measures for diagnostic
assessments to more fully understand which methods are likely to provide the most valid inferences
about model fit. Additionally, future work is planned to identify items that are exhibiting misfit to
look for patterns in the items that may explain why the items exhibit misfit, and may also inform
future test development.

Finally, although the analyses presented here are specific to the DLM alternate assessment, these
findings and lessons learned can be applied to almost any diagnostic and/or adaptive assessment.
For example, finding an adequate measure of model-level fit with a sparse data matrix is applicable to
any adaptive test where students don’t test on all of same items, or even necessarily sets of items. This
work also has implications for diagnostic assessments, where the evaluation of model is traditionally
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limited to only model comparisons, without also evaluating the absolute fit of the model to the data.
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