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I. INTRODUCTION 
During the 2016–2017 academic year, the Dynamic Learning Maps® (DLM®) Alternate 
Assessment System offered assessments of student achievement in mathematics, English 
Language Arts (ELA), and science for students with the most significant cognitive disabilities in 
grades 3–8 and high school. Due to differences in the development timeline for science, separate 
technical manuals were prepared for ELA and mathematics (see Dynamic Learning Maps 
[DLM] Consortium, 2016b and DLM Consortium, 2016c). 

The purpose of the DLM system is to improve academic experiences and outcomes for students 
with the most significant cognitive disabilities by setting high, actionable academic expectations 
and providing appropriate and effective supports to educators. Results from the DLM alternate 
assessment are intended to support interpretations about what students know and are able to 
do and support inferences about student achievement, progress, and growth in the given 
content area. Results provide information that can be used to guide instructional decisions as 
well as information that is appropriate for use with state accountability programs. 

The DLM Alternate Assessment System is based on the core belief that all students should have 
access to challenging, grade-level content. Online DLM assessments give students with the most 
significant cognitive disabilities opportunities to demonstrate what they know in ways that 
traditional, paper-and-pencil, multiple-choice assessments cannot. A year-end assessment is 
administered in the spring, and results from that assessment are reported for state 
accountability purposes and programs. 

A complete technical manual was created for the first year of operational administration in 
science, 2015–2016. The current technical manual provides updates for the 2016–2017 
administration; therefore, only sections with updated information are included in this manual. 
For a complete description of the DLM science assessment system, refer to the 2015–2016 
Technical Manual – Science (DLM Consortium, 2017b). 

I.1. BACKGROUND 
In 2016–2017, DLM science assessments were administered to students in nine states: Alaska, 
Illinois, Iowa, Kansas, Maryland, Missouri, Oklahoma, West Virginia, and Wisconsin. 

In 2016–2017, the Center for Accessible Teaching, Learning, and Assessment Systems (ATLAS) 
at the University of Kansas continued to partner with the Center for Literacy and Disability 
Studies at the University of North Carolina at Chapel Hill and the Center for Research Methods 
and Data Analysis at the University of Kansas. The project was also supported by a Technical 
Advisory Committee (TAC). 

I.2. TECHNICAL MANUAL OVERVIEW 
This manual provides evidence to support the DLM Consortium’s assertion of technical quality 
and the validity of assessment claims. 
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Chapter I provides an overview of the assessment and administration for the 2016–2017 
academic year and a summary of contents of the remaining chapters. While subsequent 
chapters describe the essential components of the assessment system separately, several key 
topics are addressed throughout this manual, including accessibility and validity. 

Chapter II provides an overview of the purpose of the Essential Elements for science, including 
the intended coverage within the Framework for K-12 Science Education: Practices, Crosscutting 
Concepts, and Core Ideas (National Research Council, 2012) and the Next Generation Science 
Standards (NGSS; 2013). For a full description of the process by which the Essential Elements 
were developed, see the 2015–2016 Technical Manual – Science (DLM Consortium, 2017b) 
chapter. 

Chapter III outlines procedural evidence related to test content. The chapter includes 
summaries of external reviews for content, bias, and accessibility. The final portion of the 
chapter describes the operational and field-test content available for 2016–2017. 

Chapter IV provides an overview of the fundamental design elements that characterize test 
administration and how each element supports the DLM theory of action. The chapter provides 
updated information about administration incidents and evidence for spring routing in the 
system, as well as teacher-survey results collected during 2016–2017 regarding educator 
experience, administration of instructionally embedded assessments, and system accessibility. 

Chapter V provides a summary of the psychometric model that underlies the DLM project and 
describes the process used to estimate item and student parameters from student test data. The 
chapter includes a summary of calibrated parameters, mastery assignment for students, and 
evidence of model fit. For a complete description of the modeling method, see Chapter V in the 
2015–2016 Technical Manual – Science (DLM Consortium, 2017b). 

Chapter VI was not updated for 2016–2017. See Chapter VI in the 2015–2016 Technical Manual – 
Science (DLM Consortium, 2017b) for a description of the methods, preparations, procedures, 
impact data, and results of the standard-setting meeting. 

Chapter VII reports the 2016–2017 operational results, including student participation data. The 
chapter details the percentage of students at each performance level; subgroup performance by 
gender, race, ethnicity, and English learner status; and the percentage of students who showed 
mastery at each linkage level. Finally, the chapter provides descriptions of all types of score 
reports, data files, and quality control methods. 

Chapter VIII focuses on reliability evidence, including a summary of the methods used to 
evaluate assessment reliability and results by performance level, content area, domain, Essential 
Element, linkage level, and conditional linkage level. For a complete description of the 
reliability background and methods, see Chapter VIII in the 2015–2016 Technical Manual – 
Science (DLM Consortium, 2017b). 

Chapter IX describes additional validation evidence not covered in previous chapters. The 
chapter provides study results for four of the five critical sources of evidence: test content, 
internal structure, response process, and consequences of testing. For evidence of relation to 
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other variables, see Chapter IX in the 2015–2016 Technical Manual – Science (DLM Consortium, 
2017b). 

Chapter X was not updated for 2016–2017. See Chapter X in the 2015–2016 Technical Manual – 
Science (DLM Consortium, 2017b) for a description of the training and instructional activities 
that were offered across the DLM Science Consortium. 

Chapter XI synthesizes the evidence provided in the previous chapters. It also provides future 
directions to support operations and research for DLM assessments.
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II. ESSENTIAL ELEMENT DEVELOPMENT 
The Essential Elements (EEs) for science, which include three levels of cognitive complexity, are 
the conceptual and content basis for the Dynamic Learning Maps® (DLM®) alternate 
assessments for science, with the overarching purpose of supporting students with the most 
significant cognitive disabilities (SCD) in their learning of science content standards. For a 
complete description of the process used to develop the EEs for science, based on the organizing 
structure suggested by the Framework for K-12 Science Education: Practices, Crosscutting Concepts, 
and Core Ideas (National Research Council, 2012; “Framework” hereafter) and the Next 
Generation Science Standards (2013; NGSS), see Chapter II of the 2015–2016 Technical Manual – 
Science (Dynamic Learning Maps [DLM] Consortium, 2017b). 

The 2015–2016 alternate assessments for science were based on the version of the EEs for science 
developed from the Framework and the NGSS during Phase 1 of the two-phase project. This 
approach addressed member states’ need for the immediate creation of an end-of-year 
assessment in elementary, middle, and high school grade bands, as well as an end-of-course 
assessment in high school biology. 

While additional work on the EEs is expected to occur after the development of a research-
based learning map model that will also inform future decisions about the content and test 
design, the purpose of the 2015–2016 Technical Manual – Science (DLM Consortium, 2017b) and 
this update is to provide evidence only for Phase 1 of the science project. Phase 2 of the science 
project will require its own separate accumulation and evaluation of evidence to support 
validity claims aligned to its theory of action. 

II.1. PURPOSE OF ESSENTIAL ELEMENTS FOR SCIENCE 
The EEs for science are specific statements of knowledge and skills linked to the grade-band 
expectations identified in the Framework and NGSS, and they are the content standards on 
which the alternate assessments are built. The general purpose of the DLM EEs is to build a 
bridge connecting the content in the Framework and NGSS with academic expectations for 
students with SCD. This section describes the intended breadth of coverage of the DLM EEs for 
science as it relates to the Framework and NGSS. For a complete summary of the process used to 
develop the EEs, see Chapter II of the 2015–2016 Technical Manual – Science (DLM, 2017b). 

As described in the 2015–2016 Technical Manual – Science (DLM Consortium, 2017b), the 
Framework and NGSS served as the organizing structure for developing the DLM EEs for 
science. However, as the science state partners did not want to develop EEs for every sub-idea 
in the Framework, a crosswalk of states’ existing alternate science standards was used to identify 
the intended foci for students with SCD and the DLM science assessment. This information was 
then used to map states’ alternate standards to the Framework and NGSS. The DLM Science 
Consortium identified the most frequently assessed topics across states in the three content 
domains of physical science, life science, and Earth and space science. The analysis of states’ 
alternate content standards resulted in a list of common cross-grade Disciplinary Core Ideas 
(DCIs) and sub-ideas seen in the Framework in states’ science standards. From there, states 
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requested that at least one EE be developed under each of the 11 DCIs. Their rationale included 
a desire for breadth of coverage across the DCIs defined by the Framework (i.e., not the breadth 
of coverage that represented the entire Framework), and included content that persisted across 
grade bands, as well as content that was most important for students with SCD to be prepared 
for college, career, and community life. As such, the intention was not to develop EEs for every 
sub-idea in the Framework, but rather for a selected subset of sub-ideas across all of the DCIs that 
would be an appropriate basis for developing alternate content standards for students with 
SCD.
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III. ITEM AND TEST DEVELOPMENT 
Chapter III of the 2015–2016 Technical Manual – Science (Dynamic Learning Maps® [DLM®] 
Consortium, 2017b) describes general item- and test-development procedures. This chapter 
provides an overview of updates to item and test development for the 2016–2017 academic year. 
The first portion of the chapter provides a summary of item and testlet information, followed by 
the 2016–2017 external reviews of items and testlets for content, bias, and accessibility. The next 
portion of the chapter describes the operational assessments for 2015–2016, followed by a 
section describing field tests administered in 2016–2017. 

See the 2015–2016 Technical Manual – Science (DLM Consortium, 2017b) for a complete 
description of item and test development for Dynamic Learning Maps (DLM) assessments, 
including information on the use of evidence-centered design and Universal Design for 
Learning in the creation of concept maps to guide test development; external review of content; 
and information on the pool of items available for the pilot, field tests, and 2015–2016 
administration. 

III.1. ITEMS AND TESTLETS 
This section describes information pertaining to items and testlets administered as part of the 
DLM assessment system. For a complete summary of item- and testlet-development 
procedures, see Chapter III of the 2015–2016 Technical Manual – Science (DLM Consortium, 
2017b). 

III.1.A. ITEMS 
All computer-delivered multiple-choice items contain three answer options, one of which is 
correct. Students may select only one answer option. Most answer options are words, phrases, 
or sentences. For items that evaluate certain learning targets, answer options are images. All 
teacher-administered items contain five answer options for which educators select the option 
that best describes the student’s behavior in response to the item. 

Items typically begin with a stem, which is the question or task statement itself. Each stem is 
followed by the answer options, which vary in format depending on the nature of the item. 
Answer options are presented without labels (e.g., A, B, C) and allow students to directly 
indicate their chosen responses. Computer-delivered testlets use multiple-choice items. Answer 
options for computer-delivered multiple-choice items are ordered according to the following 
guidelines: 

• Arrange single-word answer options in alphabetical order. 
• Arrange answer options that are phrases or sentences by logic (e.g., order as appears 

in a passage, stanza, or paragraph; order from key, chart, or table; chronological 
order; atomic number from periodic table; etc.), or, if no logical alternative is 
available, by length from shortest to longest. 
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• If following the arrangement guidelines results in consistently having the first option 
as the key (or the second or the third) for all items in a testlet, the order may be 
rearranged to avoid creating a pattern.  

Teacher-administered item answer options are presented in a multiple-choice format often 
called a Teacher Checklist. These checklists typically follow the outline below: 

• The first answer option is the key. 
• The second answer option reflects the incorrect option. 
• The third answer option reflects the student choosing both answer options (i.e., the 

key and the incorrect option). 
• The second-to-last answer option usually is “Attends to other stimuli.” 
• The last answer option usually is “No response.” 

Refer to Chapter III of the 2015–2016 Technical Manual – Science (DLM Consortium, 2017b) for a 
complete description of the design of computer-delivered and teacher-administered testlets. 

III.1.B. ITEM WRITING 
Development of DLM items and testlets for science began in the winter of 2015. Additional 
items and testlets were developed during that summer. In 2015, item writing occurred during 
two events in which content and special education specialists worked on-site in Kansas City, 
Missouri, or Lawrence, Kansas, respectively, to develop DLM assessments. While each testlet 
developed in 2015 consisted of three items, item development continued in 2016 with the 
specific goal of developing five-item testlets. To this end, new testlets were created or items 
were added to the existing, nonoperational three-item testlets. A description of the development 
process and item writer characteristics is provided in this section. A description of the item 
writers from 2015 is provided in Chapter III of the 2015–2016 Technical Manual – Science (DLM 
Consortium, 2017b). 

The science test development team was responsible for writing the five-item testlets in 2016. The 
team consisted of three staff members: one graduate research assistant and two full-time staff 
members with combined experience teaching science, students with disabilities in elementary, 
middle, and high school grade levels. All three team members had at least master’s-level 
degrees in education and significant experience writing, editing, or reviewing DLM items. 

Using the pool of testlets developed during the July 2015 science item-writing workshop but not 
yet operational, the test-development team wrote two additional items for as many of the 
testlets as possible. In other words, additional items were written when the context of the testlet 
lent itself to additional ways of measuring the construct. When this was not an option, the team 
wrote new testlets. Testlets developed during 2016 were externally reviewed and subsequently 
field-tested in the spring of 2017. The results from the external review process are provided in 
the next section. 
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III.2. EXTERNAL REVIEWS 
The purpose of external review is to evaluate items and testlets developed for the DLM 
Alternate Assessment System. Using specific criteria established for DLM assessments, 
reviewers recommended that the content be accepted, revised, or rejected. Feedback from 
external reviewers was used to make final decisions about assessment items before they were 
field-tested. 

Overall, the process and review criteria for external review in 2016–2017 remained the same as 
those used in 2015–2016. Minor changes were made, including using fewer reviewers who 
completed more assignments. 

Across all three content areas in the DLM assessment system (i.e., English language arts, 
mathematics, and science), the external review criteria and process appear to be a useful and 
effective review of content by outside panelists. Over the 5 years that the process has been 
implemented for the DLM system, modifications have been made to improve any noted 
difficulties, resulting in fewer field-test items being flagged for review each year across content 
areas. 

III.2.A. REVIEW RECRUITMENT, ASSIGNMENTS, AND TRAINING 
In 2016–2017, a volunteer survey was used to recruit external review panelists. Volunteers for 
the external review process completed the Qualtrics survey to capture demographic 
information as well as information about their education and experience. These data were then 
used to identify panel types (content, bias and sensitivity, and accessibility) for which the 
volunteers were eligible. A total of 37 people completed the required training, 12 of whom were 
placed on external review panels. 

Of the 12 reviewers placed on panels, five completed reviews. Each reviewer was assigned to 
one of the three panel types. There were five reviewers: two on accessibility panels, two on 
content panels, and one on a bias and sensitivity panel. In addition, three power reviewers and 
two hourly reviewers examined all three panel types as needed for each content area. 

The professional roles reported by the 2016–2017 reviewers are shown in Table 1. Reviewers 
who reported other roles included a specialized teacher and a supervisor of special education. 

Table 1. Professional Roles of External Reviewers 

Role n % 

Classroom teacher 2 40.0 

Instructional coach 1 20.0 

Other 2 40.0 
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Reviewers had diverse experience teaching students with the most significant cognitive 
disabilities. Science reviewers had a median of 23 years of experience, with a minimum of 15 
and a maximum of 27 years of experience. 

All science reviewers were female and non-Hispanic/Latino. Most reviewers self-identified as 
Caucasian, although one reviewer reported that she was African American. Population density 
of schools in which reviewers taught or held a position is reported in Table 2. Within the 
survey, rural was defined as a population living outside settlements of 1,000 or fewer 
inhabitants, suburban was defined as an outlying residential area of a city of 2,000–49,000 or 
more inhabitants, and urban was defined as a city of 50,000 inhabitants or more. 

Table 2. Population Density for Schools of External Reviewers 

Population density n % 

Rural 1 20.0 

Suburban 2 40.0 

Urban 2 40.0 

 

Review assignments were given throughout the year. Reviewers were notified by email each 
time they were assigned collections of testlets. Each review assignment required 1.5 to 2 hours 
to complete. In most cases, reviewers were given between 10 days and 2 weeks to complete an 
assignment. 

III.2.B. RESULTS OF REVIEWS 
Most of the content externally reviewed during the 2016–2017 academic year was included in 
the spring testing window. On a limited basis, reviewers examined content for the upcoming 
2017–2018 school year. For science, 100% of items and testlets were rated as accept or review. No 
content was recommended for rejection. A summary of the content-team decisions and 
outcomes is provided here. 

III.2.C. CONTENT-TEAM DECISIONS 
Because multiple reviewers examined each item and testlet, external review ratings were 
compiled across panel types, following the same process used in the previous 2 years. DLM 
content teams reviewed and summarized the recommendations provided by the external 
reviewers for each item and testlet. Based on the combined information, there were five decision 
options: (a) no pattern of similar concerns—accept as is, (b) pattern of minor concerns—will be 
addressed, (c) major revision needed, (d) reject, and (e) more information needed. 

DLM content teams documented the decision category applied by external reviewers to each 
item and testlet. Following this process, content teams made a final decision to accept, revise, or 
reject each item and testlet. The science content team retained 100% of items and testlets sent 
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out for external review. Of the items and testlets that were revised, most required only minor 
changes (e.g., minor rewording but concept remained unchanged), as opposed to major changes 
(e.g., stem or answer option replaced). The science team made 43 minor revisions to items and 
31 minor revisions to testlets. 

III.3. OPERATIONAL ASSESSMENT ITEMS FOR 2016–2017 
Operational assessments were administered during the spring testing window. A total of 
169,603 operational test sessions were administered; one test session is one testlet taken by one 
student. Only test sessions that were completed or in progress at the close of the testing window 
were included in the total number of test sessions. 

Table 3 summarizes the total number of operational testlets for 2016–2017. A total of 109 
operational testlets were available across the three grade bands; no science states in 2016–2017 
participated in the end-of-instruction biology assessment. This total also included 27 braille 
testlets and one combination of EE and linkage level for which more than one testlet was 
available during an operational window due to having both a BVI and general version of the 
testlet available. 

Table 3. Distribution of 2016–2017 Operational Science Testlets by Grade Band (N = 109) 

Grade band  n 

Elementary 36 

Middle school 36 

High school 37 

 

Similar to 2015–2016, p values were calculated for all operational items to summarize 
information about item difficulty. 

Figure 1 shows the p values for each operational item in science. To prevent items with a small 
sample size from skewing results, the student sample-size cutoff for inclusion in the p values 
plots was 20. The p values for most science items were between .5 and .8. 
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Figure 1. Shown are p values for 2016–2017 operational science items.  
Note. Items with a sample size of less than 20 were omitted. 

Standardized difference values were also calculated for all operational items with a student 
sample size of at least 20 to compare the p value for the item to the p values of all other items 
measuring the same EE and linkage-level combination. The standardized difference values 
provide one source of evidence of internal consistency. Figure 2 summarizes the standardized 
difference values for operational items. Most items fell within two standard deviations of the 
mean for the EE and linkage level. As additional data are collected and decisions are made 
regarding item-pool replenishment, item standardized difference values will be considered 
along with item-misfit analyses to determine which items and testlets are recommended for 
retirement. 
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Figure 2. Standardized difference z scores for 2016–2017 operational science items.  
Note. Items with a sample size of less than 20 were omitted. 

III.4. FIELD TESTING 
During the 2016–2017 academic year, DLM field tests were administered to evaluate item 
quality for EEs assessed at each grade band for science, using the five-item testlets described 
earlier in this chapter. Field testing is conducted to deepen operational pools so that multiple 
testlets are available in spring windows. By deepening the operational pools, testlets can also be 
evaluated for retirement when other testlets perform better. A complete summary of prior pilot 
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and field-test events can be found in the Summary of the Dynamic Learning Maps Science Alternate 
Assessment Development Process (Nash & Bechard, 2016). 

III.4.A. DESCRIPTION OF FIELD TESTS 
Collection of field-test data during the spring window in science was first implemented in the 
2016–2017 academic year. During the spring administration, all students received one field-test 
testlet in science upon completion of all operational testlets. 

The spring field-test administration was designed to both evaluate the new five-item testlets 
and collect data for each participating student at more than one linkage level for an EE to 
support future modeling development. (See Chapter V of this manual for more information.) As 
such, the field-test testlets were assigned at one linkage level below the last linkage level at 
which the student was assessed. Because of the process of assigning the testlet one linkage level 
lower than the last testlet, no Target-level testlets were field-tested during the spring window. 

Testlets were made available for spring field testing in 2016–2017 for each section of the 
assessment. Table 4 summarizes the total number of field-test testlets by grade band for 2016–
2017. A total of 82 field-test testlets were available. 

Table 4. Distribution of 2016–2017 Science Field-Test Testlets by Grade Band (N = 82) 

Grade band n 

Elementary 27 

Middle school 28 

High school 27 

 

Participation in spring field testing was not required in any state, but teachers were encouraged 
to administer all available testlets to their students. The participation rate for science field 
testing in 2016–2017 was 72.1% (N= 14,200). The high participation rate allowed all testlets to 
meet sample-size requirements (i.e., responses from at least 20 students) and thus undergo 
statistical and content review before moving to the operational pool. 

III.4.B. FIELD-TEST RESULTS 
Data collected during each field test are compiled, and statistical flags are implemented ahead 
of content-team review. Flagging criteria serve as a source of evidence for content teams in 
evaluating item quality; however, final judgments are content based, taking into account the 
testlet as a whole. 

III.4.B.i. Item Flagging 

Criteria used for item flagging during previous field-test events were retained for 2016–2017. 
Items were flagged for review if they met any of the following statistical criteria: 
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• The item was too challenging, as indicated by a percentage correct (p value) below 35%. 
This value was selected as the threshold for flagging because most DLM items consist of 
three response options, so a value of less than 35% may indicate chance selection of the 
option. 

• The item was significantly easier or harder than other items assessing the same EE and 
linkage level, as indicated by a weighted standardized difference greater than two 
standard deviations from the mean p value for that EE and linkage-level combination. 

Reviewed items had a sample size of at least 20 cases. Figure 3 summarizes the p values for 
items field-tested during the 2016–2017 spring window. Most items fell above the 35% threshold 
for flagging. Test-development teams for each content area reviewed items below the threshold. 

 
Figure 3. Shown are p values for 2016–2017 science items field-tested during spring window.  
Note. Items with a sample size of less than 20 were omitted. 
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Figure 4 summarizes the standardized difference values for items field-tested during the 2016–
2017 spring window. Most items fell within two standard deviations of the mean for the EE and 
linkage level. Test-development teams for each content area reviewed items below the 
threshold. 

 
Figure 4. Standardized difference z scores for 2016–2017 science items field-tested during spring 
window.  
Note. Items with a sample size of less than 20 were omitted. 

III.4.B.ii. Item Data Review Decisions 

Using the same procedures used in prior field-test windows, the test-development team made 
four types of item-level decisions as they reviewed field-test items flagged for either a p value or 
a standardized difference value beyond the threshold. 
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1. No changes made to item: Test-development team decided item can go forward to 
operational assessment. 

2. Test-development team identified concerns that required modifications: Modifications 
were clearly identifiable and were likely to improve item performance. 

3. Test-development team identified concerns that required modifications: The content 
was worth preserving rather than rejecting. Item review may not have clearly pointed 
to specific edits that were likely to improve the item. 

4. Reject item: Test-development team determined the item was not worth revising. 

For an item to be accepted as is, the test-development team had to determine that the item was 
consistent with DLM item-writing guidelines and was aligned to the node. An item or testlet 
was rejected completely if it was inconsistent with DLM item-writing guidelines, if the EE and 
linkage level were covered by other testlets that had better performing items, or if there was no 
clear content-based revision to improve the item. In some instances, a decision to reject an item 
resulted in the rejection of the testlet as well. 

Common reasons for flagging an item for modification included items that were incorrectly 
keyed (i.e., no correct answer or incorrect answer option was labeled as the correct option), 
items that were misaligned to the node, distractors that could be argued to be partially correct, 
or unnecessary complexity in the language of the stem. 

After reviewing flagged items, reviewers looked at all items rated at 3 or 4 within the testlet to 
help determine whether the testlet would be retained or rejected. Here, the test-development 
team could elect to keep the testlet (with or without revision) or reject it. If an edit was to be 
made, it was assumed the testlet needed retesting. The entire testlet was rejected if the test-
development team determined the flagged items could not be adequately revised. 

III.4.B.iii. Results of Item Analysis and Content-Team Review 

A total of 16 items were flagged due to their p values and/or standardized difference values. 
The test-development team reviewed all flagged items and their context within the testlet to 
identify possible reasons for the flag and to determine whether an edit was likely to resolve the 
issue. 

Table 5 provides the test-development team’s counts for acceptance, revision, and rejection for 
all field-test flagged items. No items were rejected or required revisions as a result of the 
review. 
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Table 5. Science Content Team Response to Item Flags for Each Grade Band (N = 16) 

Grade band 
Flagged 

item count 
Accept Revise Reject 

n % n % n % 
Elementary   3   3 100.0 0 0.0 0   0.0 

Middle school   5   5 100.0 0 0.0 0   0.0 

High school   8   8 100.0 0 0.0 0   0.0 

 

Decisions to recommend testlets for retirement occur on an annual basis following the 
completion of the operational testing year. When multiple testlets are available for an EE and 
linkage-level combination, test-development teams may recommend the retirement of testlets 
that perform poorly compared to others measuring the same EE and linkage level. The 
retirement process will begin after the 2016–2017 academic year and will be reported in the 
2017–2018 Technical Manual Update – Science. 
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IV. TEST ADMINISTRATION 
Chapter IV of the 2015–2016 Technical Manual – Science (Dynamic Learning Maps® [DLM®], 
2017b) describes general test administration and monitoring procedures. This chapter describes 
procedures and data collected in 2016–2017, including a summary of adaptive routing, 
administration errors, Personal Needs and Preferences (PNP) profile selections, and teacher-
survey responses regarding user experience and accessibility. 

Overall, administration features remained consistent with the prior year’s implementation, 
including spring administration of testlets, adaptive delivery, and the availability of 
accessibility supports. 

For a complete description of test administration for DLM assessments, including information 
on, administration time, available resources and materials, and monitoring assessment 
administration, see the 2015–2016 Technical Manual – Science (DLM Consortium, 2017b). 

IV.1. OVERVIEW OF KEY ADMINISTRATION FEATURES 
This section describes updates to the key, overarching features of Dynamic Learning Maps 
(DLM) test administration for 2016–2017. For a complete description of key administration 
features, including information on assessment delivery, KITE® Client, and linkage-level 
selection, see Chapter IV of the 2015–2016 Technical Manual – Science (DLM Consortium, 2017b). 
Additional information about administration can be found in the Test Administration Manual 
2016–2017 (DLM Consortium, 2016a) and the Educator Portal User Guide (Dynamic Learning 
Maps Consortium, 2017a). 

IV.1.A. TEST WINDOWS 
During the consortium-wide spring testing window, which occurred between March 15 and 
June 9, 2017, students were assessed on each Essential Element (EE) on the blueprint. Each state 
set its own testing window within the larger consortium spring window. 

IV.2. IMPLEMENTATION EVIDENCE 
This section describes evidence collected for 2016–2017 during the operational implementation 
of the DLM Alternate Assessment System. The categories of evidence include data relating to 
the adaptive delivery of testlets in the spring window, administration incidents user experience, 
and accessibility. 

IV.2.A. ADAPTIVE DELIVERY 
During the spring 2017 test administration, the science assessment was adaptive between 
testlets, following the same routing rules applied in 2015–2016. That is, the linkage level 
associated with the next testlet a student received was based on the student’s performance on 
the most recently administered testlet, with the specific goal of maximizing the match of student 
knowledge, skill, and ability to the appropriate linkage-level content. 
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• The system adapted up one linkage level if the student responded correctly to at least 
80% of the items measuring the previously tested EE. If the previous testlet was at the 
highest linkage level (i.e., Target), the student remained at that level. 

• The system adapted down one linkage level if the student responded correctly to less 
than 35% of the items measuring the previously tested EE. If the previous testlet was at 
the lowest linkage level (i.e., Initial), the student remained at that level. 

• Testlets remained at the same linkage level if the student responded correctly to between 
35% and 80% of the items on the previously tested EE. 

The linkage level of the first testlet assigned to a student was based on First Contact survey 
responses. Table 6 shows the correspondence between the First Contact complexity bands and 
first assigned linkage levels. 

Table 6. Correspondence of Complexity Bands and Linkage Levels 

First Contact 
complexity band Linkage level 

Foundational Initial 

1 Initial 

2 Precursor 

3 Target 

 
For a complete description of adaptive delivery procedures, see Chapter IV of the 2015–16 
Technical Manual – Science (DLM Consortium, 2017b). 

Following the spring 2017 administration, analyses were conducted to determine the mean 
percentage of testlets that adapted up a linkage level, stayed at the same linkage level, or 
adapted down a linkage level from the first to second testlet administered for students within a 
grade and complexity band. The aggregated results can be seen in Table 7. 

In comparison to 2015–2016, results were similar for students assigned to the Foundational 
complexity band. However, some differences were seen for students assigned to the other three 
bands. In particular, students who were assigned to Bands 1 and 2 adapted up a linkage level 
more frequently between their first and second testlets in comparison to 2015–2016. For 
students assigned to Band 2, the percentage of testlets that did not adapt was similar to 2015–
2016 results; however, the percentage that adapted down a level decreased. Finally, while in 
both years the majority of students assigned to Band 3 did not adapt up or down linkage levels 
between first and second testlets, there was a slight increase in this trend in 2016–2017. 
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Overall, patterns seen for students assigned to the Foundational and Band 3 complexity bands 
are expected given the limited directions in which they can adapt. The shift in more testlets 
adapting up a linkage level for Band 1 and Band 2 students may be explained by several factors, 
including more opportunity for students to learn science content and interact with the 
assessment and more variability in student characteristics within this group. 
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Table 7. Adaptation of Linkage Levels Between First and Second Science Testlets by Grade Band (N = 19,686) 

Grade 
band 

Foundational* Band 1* Band 2 Band 3* 

Adapted 
up (%) 

Did not 
adapt (%) 

Adapted 
up (%) 

Did not 
adapt (%) 

Adapted 
up (%) 

Did not 
adapt (%) 

Adapted 
down (%) 

Did not 
adapt (%) 

Adapted 
down (%) 

3–5 35.9 64.1 73.9 26.1 40.9 40.0 19.1 69.6 30.4 

6–8 26.7 73.3 57.6 42.4 51.5 30.9 17.6 67.9 32.1 

9–12 27.1 72.9 53.7 46.3 37.4 38.0 24.6 80.1 19.9 

* Foundational and Band 1 correspond to testlets at the lowest linkage level, so testlets could not adapt down a linkage level. Band 3 
corresponds to testlets at the highest linkage level in science, so testlets could not adapt up a linkage level. 
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IV.2.B. ADMINISTRATION INCIDENTS 
Monitoring of testlet assignment during the 2016–2017 operational assessment window 
uncovered two incidents that potentially affected a small number of students’ experience with 
the science assessment. Table 8 provides a summary of the number of students affected by each 
incident, as delivered to states in the Incident File (see Chapter VII of this manual for more 
information). Following delivery of the Incident File on the predetermined timeline, a script was 
created to identify students who were actually affected by each incident, narrowing from the list 
of those potentially affected.1 These values are also reported in Table 8. This script will be 
modified such that the 2018 Incident File and beyond reports only students actually affected by 
the incident rather than students who may have been affected. 

The most frequent incident was potential incorrect scoring and misrouting caused by a system 
database load issue. While there was no evidence that the database did not record student 
responses as intended, this incident was reported out of an abundance of caution in the unlikely 
event student responses were stored as skips by the system during the load issue period. For 
Incident Code 5 (i.e., misrouting due to testlet re-administration after student transfer), the 
impacted state was provided information about the affected student and given the option to 
revert the student’s assessment back to the end of the last correctly completed testlet (i.e., the 
point at which routing failed) and have the student complete the remaining testlets as intended. 
Additional details about the two incidents are provided in Table 9. Overall, the administration 
incidents affected less than 0.001% of students testing in science. 

Table 8. Number of Students Affected by Each 2017 Incident 

Incident 
code Incident description 

Potential effect as 
reported in Incident File  Actual effect  

n % n % 

4 
Potential incorrect scoring and 
misrouting due to KITE database 
load issue. 

16 < 0.001 0* 0.00* 

5 
Misrouting due to testlet re-
administration after student 
transfer. 

1 < 0.001 1 < 0.001 

Note. Incident codes 1–3 did not affect the science assessment. 
*Estimated actual effect. There is no evidence that the database did not record student 
responses. 

                                                      
1Due to the type of incidents that affected the science assessment, the number of students 

reported as potentially affected was the number that were actually affected. 
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Table 9. Incident Summary for 2016–2017 Operational Testing, Science 

Incident 
no. Issue Type Summary 

4 

Potential 
incorrect scoring 
and misrouting 
due to KITE 
database load 
issue 

Technology: 
Capacity 

An integration server used by the test-
delivery application experienced server load 
issues April 4, 2017 8:50 a.m.–2:05 p.m. CST 
and April 5, 2017, 8:45–10:55 a.m. CST. As a 
matter of regular practice, if the database 
times out before a student’s response is 
submitted, the system starts the student at the 
beginning of the testlet the next time the 
testlet is opened. There is no evidence that 
the database did not record all student 
responses during the two impacted periods. 
Because items may be intentionally skipped 
as a matter of practice or student choice, and 
because there is no evidence that the database 
did not record student responses, it is 
assumed that all responses were recorded by 
the database as intended. However, out of an 
abundance of caution, testlets with one or 
more missing responses submitted during the 
two time periods were identified and 
provided to states for review. States were 
given the option to revert students to the end 
of the previously submitted testlet and 
resume testing, or to let students proceed 
forward as usual. 

5 

Misrouting due 
to testlet re-
administration 
after student 
transfer 

Technology: 
Administration 

The student transferred to a different school, 
district, and/or teacher, and the system 
reassigned a previously taken testlet. During 
the second administration, the student 
provided different responses, resulting in a 
different percent correct for routing purposes. 

 
As in 2015–2016, the Incident File was delivered to state partners with the General Research File 
(GRF; see Chapter VII of this manual for more information), providing a list of all students 
potentially affected by each issue. States could use the Incident File and their own 
accountability policies and practices to determine possible invalidation of student records. All 
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issues were corrected for subsequent administration. Testlet assignment will continue to be 
monitored in subsequent years to track any incidents and report them to state partners. 

IV.2.C. USER EXPERIENCE WITH DYNAMIC LEARNING MAPS SYSTEM 
User experience with the system was evaluated through a spring 2017 survey disseminated to 
teachers who had administered a DLM assessment during the spring window. In 2017, the 
survey was distributed to teachers via KITE Client, the platform students use to complete 
assessments. Each student was assigned a teacher survey for their teacher to complete. The 
survey included three sections. The first and third sections were fixed, while the second section 
was spiraled, with teachers responding to subsets pertaining to accessibility, Educator Portal 
and KITE Client feedback, the relationship of assessment content to instruction, and teacher 
experience with the system. 

A total of 6,619 teachers from states participating in the science assessment responded to the 
survey (response rate of 84.4%) for 14,991 students. This reflects a substantial increase in the rate 
of responding teachers compared to those observed during previous delivery of surveys in 
Qualtrics (e.g., 2016 response rate was 11.5%). Because of the difference in response rates over 
years and changes to the structure and content of the survey, the spring 2017 administration is 
treated as baseline data collection. Comparisons of data collected from 2016 are not included in 
this manual. 

Participating teachers responded to surveys for between one and 20 students. Teachers most 
frequently reported having 0 to 5 years of experience in science and in teaching students with 
the most significant cognitive disabilities. The median number of years of experience in each of 
these areas was 6 to 10. Approximately 52% indicated they had experience administering the 
DLM assessment in all three operational years. 

The sections that follow summarize user experience with the system and accessibility. 
Additional survey results are summarized in Chapter IX of this manual. For responses to the 
2015–2016 teacher survey, see Chapter IV and Chapter IX in the 2015–2016 Technical Manual – 
Science (DLM Consortium, 2017b). 

IV.2.C.i. Educator Experience 

Respondents were asked to reflect on their experiences with the assessments and their comfort 
level and knowledge in administering them. Most questions required respondents to use a 4-
point scale: strongly disagree, disagree, agree, or strongly agree. Responses are summarized in Table 
10. 

Teachers responded that they were confident administering DLM testlets (96.0% agreed or 
strongly agreed). Respondents believed that the required test administrator training prepared 
them for their responsibilities as test administrators (87.2% agreed or strongly agreed). 
Moreover, most teachers reported that manuals and the Educator Resources page on the DLM 
webpage helped them understand how to use the system (88.1%); that they knew how to use 
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accessibility supports, allowable supports, and options for flexibility (92.6%); and that the 
Testlet Information Pages helped them deliver the testlets (87.6%). 

Table 10. Teacher Response Regarding Test Administration 

Statement 

SD D A SA A+SA 

n % n % n % n % n % 

Confidence in ability to 
deliver DLM testlets. 

26 1.2 61 2.8 1,007 45.8 1,104 50.2 2,111 96.0 

Test administrator training 
prepared respondent for 
responsibilities of test 
administrator. 

73 3.3 207 9.5 1,183 54.2 720 33.0 1,903 87.2 

Manuals and DLM 
Educator Resource Page 
materials helped 
respondent understand 
how to use assessment 
system. 

44 2.0 215 9.8 1,273 58.3 653 29.9 1,926 88.1 

Respondent knew how to 
use accessibility features, 
allowable supports, and 
options for flexibility. 

32 1.5 129 5.9 1,287 58.8 739 33.8 2,026 92.6 

Testlet Information Pages 
helped respondent prepare 
to deliver the testlets. 

57 2.6 215 9.8 1,255 57.4 660 30.2 1,915 87.6 

Note. SD = strongly disagree; D = disagree; A = agree; SA = strongly agree; A+SA = agree and 
strongly agree. 

IV.2.C.ii. KITE System 

Teachers were asked about the technology used to administer testlets, including the ease of use 
of KITE Client and Educator Portal. 

KITE Client is used for the administration of DLM testlets. Teachers were asked to rate their 
experiences with KITE Client and to evaluate the ease of each step using a 5-point scale: very 
hard, somewhat hard, neither hard nor easy, somewhat easy, or very easy. Table 11 summarizes 
teacher responses. 

Respondents found it either somewhat easy or very easy to enter the site (74.4%), navigate 
within a testlet (77.5%), submit a completed testlet (83.3%), record a response (83.2%) and 
administer testlets on various devices (69.7%). Open-ended survey-response feedback indicated 
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that testlets were easy to administer and that technology had improved compared to previous 
years.  

Table 11. Ease of Using KITE Client 

Statement 

VH SH N SE VE SE+VE 

n % n % n % n % n % n % 

Enter the site 57 2.5 177 7.8 349 15.3 680 29.8 1,018 44.6 1,698 74.4 

Navigate within a 
testlet 

45 2.0 150 6.6 318 13.9 689 30.2 1,079 47.3 1,768 77.5 

Record a response 24 1.1 72 3.2 283 12.5 620 27.3 1,272 56.0 1,892 83.3 

Submit a completed 
testlet 

31 1.4 79 3.5 270 11.9 582 25.7 1,306 57.6 1,888 83.2 

Administer testlets on 
various devices 

55 2.4 135 6.0 496 21.9 656 28.9 924 40.8 1,580 69.7 

Note. VH = very hard; SH = somewhat hard; N = neither hard nor easy; SE = somewhat easy; VE 
= very easy; SE+VE = somewhat easy and very easy. 

Educator Portal is the software used to store and manage student data and to enter PNP and 
First Contact information. Teachers were asked to assess the ease of navigating and using 
Educator Portal for its intended purposes, using the same scale used regarding KITE Client; 
these data are summarized in Table 12. Overall, respondents’ feedback improved from the 
previous year but was still somewhat mixed. The majority of teachers found it somewhat easy 
or very easy to navigate the site (56.6%), enter PNP and First Contact information (65.7%), 
manage student data (56.6%), manage their own accounts (59.9%), and manage tests (54.9%). 
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Table 12. Ease of Using Educator Portal 

Statement 

VH SH N SE VE SE+VE 

n % n % n % n % n % n % 

Navigate the site 135 5.9 420 18.4 434 19.0 729 32.0 562 24.6 1,291 56.6 

Enter PNP/Access 
profile and First 
Contact information 

67 2.9 273 12.0 441 19.4 870 38.2 628 27.6 1,498 65.7 

Manage student data 97 4.3 367 16.2 520 22.9 793 35.0 491 21.6 1,284 56.6 

Manage my account 79 3.5 307 13.5 527 23.2 844 37.1 518 22.8 1,362 59.9 

Manage tests 130 5.7 418 18.4 477 21.0 731 32.1 518 22.8 1,249 54.9 

Note. VH = very hard; SH = somewhat hard; N = neither hard nor easy; SE = somewhat easy; VE 
= very easy; SE+VE = somewhat easy and very easy; PNP = Personal Needs and Preferences 
Profile. 

Open-ended survey responses indicated that teachers want less wait-time between testlet 
generation and to be able to generate Testlet Information Pages for the entire class at one time. 

Finally, respondents were asked to rate their overall experience with KITE Client and Educator 
Portal on a 4-point scale: poor, fair, good, and excellent. Results are summarized in Table 13. The 
majority of respondents reported a positive experience with KITE Client. Nearly 75.9% of 
respondents said their experience was good or excellent, while 65.0% reported their overall 
experience with Educator Portal was good or excellent. 

Overall feedback from teachers indicated that KITE Client was easy to navigate and user-
friendly. Additionally, teachers provided useful feedback for improvements to Educator Portal 
that will be considered for subsequent technology development to improve user experience for 
2017–2018 and beyond. 

Table 13. Overall Experience With KITE Client and Educator Portal 

Interface 

Poor Fair Good Excellent 

n % n % n % n % 

KITE Client 125 5.5 426 18.7 1,105 48.4 627 27.5 

Educator Portal 223 9.8 593 25.9 1,082 47.3 389 17.0 

 

IV.2.C.iii. Accessibility 

Accessibility supports provided in 2016–2017 were the same as those available in 2015–2016. 
Accessibility guidance provided by the DLM system distinguishes between accessibility 
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supports that can be used by selecting online features via the PNP, require additional tools or 
materials, and are provided by the test administrator outside the system. Table 14 shows 
selection rates for three categories of accessibility supports, sorted by rate of use within each 
category. For a complete description of available accessibility supports, see Chapter IV of the 
2015–2016 Technical Manual – Science (DLM Consortium, 2017b). Generally, the percentage of 
students for whom supports were selected in 2016–2017 was similar to that observed in 2015–
2016. 
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Table 14. Personal Needs and Preferences Profile Supports Selected for Students (N = 20,242) 

Supports n % 

Supports provided in KITE Client via Access Profile   

Spoken audio 5,453 26.94 

Magnification 3,233 15.97 

Color contrast 2,821 13.94 

Overlay color 2,527 12.48 

Invert color choice 2,249 11.11 

Supports requiring additional tools/materials   

Individualized manipulatives 8,408 41.54 

Calculator 6,867 33.92 

Single-switch system 2,704 13.36 

Alternate form – visual impairment 2,126 10.50 

Two-switch system 1,885 9.31 

Uncontracted braille 1,684 8.32 

Supports provided outside the system   

Human read aloud 18,212 89.97 

Test administration enters responses for students 10,238 50.58 

Partner-assisted scanning 3,036 15.00 

Sign interpretation of text 1,946 9.61 

Language translation of text 1,905 9.41 

 

Table 15 summarizes teacher responses to survey items about the accessibility supports used 
during administration. Teachers were asked to respond to two items using a 4-point Likert-type 
scale (strongly disagree, disagree, agree, or strongly agree) or indicate if the item did not apply to the 
student. The majority of teachers agreed that students were able to effectively use accessibility 
supports (81.9%) and that accessibility supports were similar to ones the student used for 
instruction (83.4%). These data support the conclusions that the accessibility supports of the 
DLM alternate assessment were effectively used by students, emulated accessibility supports 
used during instruction, and met student needs for test administration. Additional data will be 
collected during the spring 2018 survey to determine whether results improve over time. 
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Table 15. Teacher Reports of Student Accessibility Experience 

Statement 

SD D A SA A+SA N/A 

n % n % n % n % n % n % 

Student was able to 
effectively use 
accessibility features. 

66 2.8 95 4.0 1,039 43.6 912 38.3 1,951 81.9 269 11.3 

Accessibility features 
were similar to ones 
student uses for 
instruction. 

63 2.7 97 4.1 1,010 42.5 970 40.9 1,980 83.4 234 9.9 

Note. SD = strongly disagree; D = disagree; A = agree; SA = strongly agree; A+SA = agree and 
strongly agree; N/A = not applicable.  
 

IV.3. CONCLUSION 
During the 2016–2017 academic year, the DLM system was available for optional instructionally 
embedded use and during the operational spring window. Implementation evidence was 
collected in the forms of testlet adaptation analyses, a summary of students affected by 
incidents during operational testing, and teacher-survey responses regarding user experience 
and accessibility. Results indicated that teachers felt confident administering testlets in the 
system and found KITE Client easy to use but thought Educator Portal posed more challenges. 
Given the substantial improvement in teacher response rates, the teacher survey will continue 
to be distributed in KITE Client in 2017–2018 and beyond.
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V. MODELING 
Chapter V of the 2015–2016 Technical Manual Update – Science (Dynamic Learning Maps® [DLM®] 
Consortium, 2017b) describes the psychometric model that underlies the Dynamic Learning 
Maps (DLM) assessment system and the process used to estimate item and student parameters 
from student assessment data. This chapter provides a high-level summary of the model used to 
calibrate and score assessments, along with a summary of updated modeling evidence from the 
2016–2017 administration year. Additional evidence provided includes a description of model-
fit analyses and results. 

For a complete description of the psychometric model used to calibrate and score the DLM 
assessments, including the psychometric background, the structure of the assessment system’s 
suitability for diagnostic modeling, and a detailed summary of the procedures used to calibrate 
and score DLM assessments, see the 2015–2016 Technical Manual– Science (DLM Consortium, 
2017b). 

V.1. OVERVIEW OF THE PSYCHOMETRIC MODEL 
Learning map models, which are networks of sequenced learning targets, are at the core of the 
DLM assessments in science. Because the goal is to provide more fine-grained information 
beyond a single raw- or scale-score value when reporting student results, the assessment system 
provides a profile of skill mastery to summarize student performance. This profile is created 
using a form of diagnostic classification modeling (DCM), called latent class analysis, to provide 
information about student mastery on multiple skills measured by the assessment. Results are 
reported for each alternate content standard, called Essential Elements (EEs), at the three levels 
of complexity for which science assessments are available: Initial, Precursor, and Target. 

Simultaneous calibration of all linkage levels within an EE is not currently possible because of 
the administration design, where overlapping data from students taking testlets at multiple 
levels within an EE are uncommon. Instead, each linkage level was calibrated separately for 
each EE using separate latent class analyses. Additionally, because items were developed to 
meet a precise cognitive specification, all master and non-master probability parameters for 
items measuring a linkage level were assumed to be equal. That is, all items were assumed to be 
fungible, or exchangeable, within a linkage level. 

The DLM scoring model for the 2016–2017 administration was as follows. Using latent class 
analysis, a probability of mastery was calculated on a scale of 0 to 1 for each linkage level within 
each EE. Each linkage level within each EE was considered the latent variable to be measured. 
Students were then classified into one of two classes for each linkage level of each EE: either 
master or non-master. As described in Chapter VI of the 2015–2016 Technical Manual – Science 
(DLM Consortium, 2017b), a posterior probability of at least .8 was required for mastery 
classification. Regarding the assumption of item fungibility, a single set of probabilities of 
providing a correct response for masters and non-masters was estimated for all items within a 
linkage level. Finally, a structural parameter was also estimated, which is the proportion of 
masters for the linkage level (i.e., the analogous map parameter). In total, three parameters per 
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linkage level were specified in the DLM scoring model: a fungible probability for non-masters, a 
fungible probability for masters, and the proportion of masters. 

Following calibration, results for each linkage level were combined to determine the highest 
linkage level mastered for each EE. Although the connections between linkage levels were not 
modeled empirically, they were used in the scoring procedures. In particular, if the latent class 
analysis determined a student had mastered a given linkage level within an EE, then the 
student was assumed to have mastered all lower levels within that EE. 

In addition to the calculated posterior probability of mastery, students could demonstrate 
mastery of each EE in two additional ways: by correctly answering 80% of all items 
administered at the linkage level or by the two-down scoring rule which provides mastery 
status at two linkage levels down from a tested level that was not mastered. The two-down 
scoring rule was implemented to guard against students assessed at the highest linkage level 
being excessively penalized for incorrect responses. 

V.2. CALIBRATED PARAMETERS 
As stated in the previous section, for diagnostic assessments, the comparable item parameters 
are conditional probabilities of providing a correct response to the item. Because of the 
assumption of fungibility, parameters are calculated for each of the 102 linkage levels in 
science.2 Parameters include a conditional probability of providing a correct response for both 
non-masters and masters. Across all linkage levels, it is generally expected that the conditional 
probability of providing a correct response will be high for masters and low for non-masters. A 
summary of the operational parameters used to score the 2016–2017 assessment is provided in 
the following sections. 

V.2.A. PROBABILITY OF MASTER PROVIDING CORRECT RESPONSE 
When items measuring each linkage level function as expected, students who have mastered the 
linkage level have a high probability of providing a correct response to items measuring the 
linkage level. Figure 5 depicts the conditional probability of masters providing a correct 
response to items measuring each of the 102 linkage levels based on the spring 2017 calibration. 
Because the point of maximum uncertainty is .5, masters should have a greater than .5 chance of 
providing a correct response. The results in Figure 5 demonstrate that all linkage levels 
performed as expected. 

                                                      
2The total of 102 includes all EEs and linkage levels measured by the science assessment. While 

there no states participated in the end-of-instruction biology assessment in spring 2017, data were 
accumulated across operational years for calibration and are therefore included in this chapter. 
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Figure 5. Probability of masters providing a correct response to items measuring each linkage 
level.  
Note. Histogram bins are in increments of .01. Reference line indicates .5. 

V.2.B. PROBABILITY OF NON-MASTER PROVIDING CORRECT RESPONSE 
When items measuring each linkage level function as expected, non-masters of the linkage level 
have a low probability of providing a correct response to items measuring the linkage level. 
Instances when non-masters have a high probability of providing correct responses may 
indicate that the linkage level does not measure what it intends to measure or that the correct 
answers to items measuring the level are easily guessed. This may result in students who have 
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not mastered the content providing correct responses and possibly being incorrectly classified 
as masters, which has implications for the validity of inferences that can be made from results 
and for teachers using results to inform instructional planning. 

Figure 6 summarizes the probability of non-masters providing correct responses to items 
measuring each of the 102 linkage levels. There is greater variation in the probability of non-
masters providing a correct response to items measuring each linkage level than was observed 
for masters; the histogram in Figure 6 indicates that non-masters sometimes have a greater than 
chance (>.5) likelihood of providing a correct response to items measuring the linkage level. 
This may indicate the items (and linkage level as a whole, since the item parameters are shared) 
are easily guessed or do not discriminate as well between the two groups of students. 
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Figure 6. Probability of non-masters providing a correct response to items measuring each 
linkage level.  
Note. Histogram bin size is in increments of 0.01. Reference line indicates .5. 
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V.3. MASTERY ASSIGNMENT 
As mentioned, in addition to the calculated posterior probability of mastery, students could to 
demonstrate mastery of each EE in two additional ways: by correctly responding to 80% of all 
items administered at the linkage level or by the two-down scoring rule. To evaluate the degree 
to which each mastery assignment rule contributed to students’ linkage-level mastery status 
during the 2016–2017 administration of DLM assessments, the percentage of both mastery 
statuses obtained by each scoring rule was calculated, as shown in Figure 7. Posterior 
probability was given first priority. If mastery was not demonstrated by meeting the posterior 
probability threshold, the other two scoring rules were imposed. Approximately 80% of 
mastered linkage levels were derived from the posterior probability obtained from the 
modeling procedure. The other linkage levels (approximately 10% to 15%) were assigned 
mastery status by the minimum mastery, or two-down rule, and the remaining percentages at 
each grade were determined by the percentage-correct rule. These results indicate that the 
percentage-correct rule likely had strong overlap (but was second in priority) with the posterior 
probabilities, in that correct responses to all items measuring the linkage level were likely 
necessary to achieve a posterior probability above the .8 threshold. The percentage-correct rule 
does, however, provide mastery status when providing correct responses to all or most items 
still resulted in a posterior probability below the mastery threshold. 
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Figure 7. Linkage-level mastery assignment by mastery rule for each grade band. 

V.4. MODEL FIT 
Model fit has important implications for the validity of inferences that can be made from 
assessment results. If the model used to calibrate and score the assessment does not fit the data 
well, results from the assessment may not accurately reflect what students know and can do. 
Because one of the assumptions of the DLM assessment system is that items measuring the 
same linkage level are fungible, or exchangeable, evidence of the degree to which a fungible 
model fits the data must be evaluated. In addition, the fit of the fungible model should be 
compared to that of a nonfungible model to evaluate the models’ relative fit. 

The following sections provide a detailed description of the methodology used to evaluate 
model fit, using both relative and absolute indices. Results are summarized for the 102 linkage 
levels and 34 EEs measured by the assessment for science. 

V.4.A. DESCRIPTION OF METHODS 
To evaluate model fit for DLM assessments, two models were fit to each linkage level: a 
fungible and a nonfungible model. Definitions of each model follow, where πij is the probability 
of a respondent in class j providing a correct response to item i, ηj is the base-rate probability of 



2016–2017 Technical Manual Update 
Dynamic Learning Maps 

Science Alternate Assessment 
 

Chapter V – Modeling  Page 44 

class j, and respondents are subscripted as h = {1,2,3,...N}, items as i = {1,2,3,...I}, and classes as  
j = {1,2,...J}. 

• Fungible Model. In the fungible model, the conditional probabilities for non-masters and 
masters were held constant for all items measuring the same linkage level. 

                                              𝑓𝑓(𝐱𝐱ℎ) = �𝜂𝜂𝑗𝑗

𝐽𝐽

𝑗𝑗=0

�𝜋𝜋𝑗𝑗
𝑥𝑥𝑖𝑖ℎ

𝐼𝐼

𝑖𝑖=1

(1 − 𝜋𝜋𝑗𝑗)1−𝑥𝑥𝑖𝑖ℎ                                                    (1) 

In Equation 1, the probability of a correct response for a respondent in class 𝑗𝑗 is denoted 
as 𝜋𝜋𝑗𝑗 rather than 𝜋𝜋𝑖𝑖𝑗𝑗, indicating that 𝜋𝜋 is constant across items for all members of class 𝑗𝑗. 

• Nonfungible Model. In the nonfungible model, the conditional probabilities for non-
masters and masters were allowed to vary across all items and linkage levels. 

                                             𝑓𝑓(𝐱𝐱ℎ) = � 𝜂𝜂𝑗𝑗

𝐽𝐽

𝑗𝑗 = 0

�𝜋𝜋𝑖𝑖𝑗𝑗
𝑥𝑥𝑖𝑖ℎ

𝐼𝐼

𝑖𝑖 = 1

(1 − 𝜋𝜋𝑖𝑖𝑗𝑗)1−𝑥𝑥𝑖𝑖ℎ                                                          (2) 

In Equation 2, the probability of a correct response for a respondent in class 𝑗𝑗 is denoted 
as 𝜋𝜋𝑖𝑖𝑗𝑗, indicating that 𝜋𝜋 is specific to each item within class 𝑗𝑗. 

Because of the conceptual basis for linkage levels measuring a single skill (see Chapter II of the 
2015–2016 Technical Manual – Science, [DLM Consortium, 2017b]), the fungible model has been 
used to calibrate and score DLM assessments to date. However, given that the item parameters 
are allowed to vary in the nonfungible model, it is expected that this model would demonstrate 
superior model fit. As is the case for the vast majority of statistical models, additional 
parameters will increase the fit to the data. However, the trade-off is that increasing the number 
of parameters also increases the risk of overfitting the model to the data. When this happens, 
the model is not generalizable to data outside of the sample used to estimate the model. Thus, if 
a more parsimonious model can provide adequate model fit, that simpler model would be 
preferred. Additionally, because there are fewer parameters to estimate, the fungible model 
allows for a faster calibration. That all items in the fungible model share the same parameter 
also means extreme parameter values are less likely. Parameters for items with low sample sizes 
are not allowed to vary freely but are instead pulled into the fungible parameter, which is 
calculated on the full sample of available data. This has important implications for scoring in 
operational assessment systems. 

V.4.B. BACKGROUND ON MODEL FIT CALCULATION 
To provide evidence of model fit for two competing models (e.g., fungible and nonfungible), 
model fit evidence can be provided in the form of both relative and absolute fit indices. Relative 
fit compares the fit of two competing models to determine which model better fits the data. 
However, to determine how well each individual model fits the data, absolute fit indices are 
necessary. The sections that follow describe considerations when calculating both relative and 
absolute model fit. 
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V.4.B.i. Relative Fit 

The relative fit of two competing models can be evaluated by comparing two nested models in a 
likelihood ratio test (Neyman & Pearson, 1933). This test provides information about which of 
two competing models provides better fit to the data when summarizing results across all 
linkage levels. Relative fit is calculated based on the final loglikelihoods from the nested models 
and the number of parameters in each. Take, for example, a latent class analysis with five items. 
In the nonfungible model, 11 parameters are estimated: a conditional probability of a correct 
response for masters and non-masters (one each for all five items = 10) and one structural 
parameter that is the base-rate probability of mastery. The fungible model has three parameters: 
one conditional probability of masters providing a correct response shared by all items, one 
conditional probability of non-masters providing a correct response shared by all items, and 
one structural parameter. Because the nonfungible model has more parameters, it is expected to 
always have a larger loglikelihood (i.e., better fit). However, the likelihood ratio test tests 
whether this increase is large enough to justify the additional parameters. The likelihood ratio 
test is a 𝜒𝜒2 test defined as follows: 

                                             𝜒𝜒2 =  2 ln �
 likelihood for alternative model 

 likelihood for null model 
�                                         (3) 

 

                                            𝑑𝑑𝑓𝑓 = 𝑑𝑑𝑓𝑓alt − 𝑑𝑑𝑓𝑓null                                                                                                    (4) 

In this notation, the null model is the more simplified, or nested, model (the fungible model for 
DLM scoring). If this test is significant, then the null model is rejected, and it is determined that 
the additional parameters in the alternative model provide a statistically significant increase in 
the likelihood. 

V.4.B.ii. Absolute Fit 

In item response theory, model goodness-of-fit is commonly assessed using residual analysis 
(see Hambleton, Swaminathan, & Rogers, 1991). At the item level, the continuous theta is split 
into quadrature nodes, and the fitted item-characteristic curve is used to determine the expected 
proportion of correct responses at each quadrature point. The observed data are then used to 
calculate the observed proportion correct for each quadrature node. The difference between 
these proportions (i.e., the residual) is then standardized by dividing by the standard error of 
the residual. Thus, the prediction errors are essentially turned into z scores, which can be 
summed across all quadrature points for an item. Summed z scores follow a 𝜒𝜒2 distribution, 
with degrees of freedom equal to the number of quadrature points. Thus, for each item, a 𝜒𝜒2 test 
can be conducted to determine item-level misfit. At the test level, item-characteristic curves can 
be aggregated into a test-characteristic curve, and a similar test can be done across quadrature 
points to assess test-level model fit. 

Because DLM assessments use diagnostic models, in which the latent trait is categorical rather 
than continuous, it is not possible to create item-characteristic or test-characteristic curves. 
Nevertheless, a similar approach can be taken in that a 𝜒𝜒2 can be calculated for each item based 
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on the residuals. However, because the latent trait is categorical, the expected proportion of 
respondents in each score category can be calculated directly from model parameters instead of 
by breaking the trait into quadrature points. 

As an example, consider a dichotomous attribute, where the base-rate probability of mastery is 
.6, and an item that measures this attribute, where masters have a .8 probability and non-
masters a .15 probability of providing a correct response. Given these parameters, the 
proportion of respondents expected to provide a correct response can be calculated as follows: 

                   𝑃𝑃(𝑋𝑋𝑖𝑖 = 1) = 𝜂𝜂1𝜋𝜋𝑖𝑖1 + 𝜂𝜂2𝜋𝜋𝑖𝑖2                                                                                           (5) 
= (0.6)(0.8) + (0.4)(0.15) 
= 0.54 

Similarly, the proportion of respondents expected to provide an incorrect response can be 
calculated as follows: 

                       𝑃𝑃(𝑋𝑋𝑖𝑖 = 0) = 𝜂𝜂1(1 − 𝜋𝜋𝑖𝑖1) + 𝜂𝜂2(1 − 𝜋𝜋𝑖𝑖2)                                                                  (6) 
= (0.6)(0.2) + (0.4)(0.85) 
= 0.46 

These proportions can be converted to frequencies by multiplying the expected proportions by 
the total number of respondents who took the item. For example, if 100 respondents had taken 
this item, a contingency table could be constructed showing the number of expected and 
observed respondents at each score point (Table 16). 

Table 16. Univariate Contingency Table 

Item 1 score Expected N Observed N 

0 46 48 

1 54 52 

 

Using the data in Table 16, a 𝜒𝜒2 goodness-of-fit test can be calculated (𝜒𝜒(1)
2  = 0.16, p = .68). 

Because the p value is nonsignificant, this test would not indicate item-level misfit. 

In addition to looking at a single item, it is also possible to look at the fit of multiple items 
simultaneously. For example, when using two items, a 2x2 contingency table can be constructed 
to show the observed and expected frequencies of each response pattern. Table 17 presents 
these contingency tables together (one for expected frequencies and one for observed 
frequencies) together in one long-format table for readability. 
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Table 17. Bivariate Contingency Table 

Item 1 score Item 2 score Expected N Observed N 

0 0 26 30 

0 1 20 18 

1 0 10 7 

1 1 44 45 

 

As with the univariate example in Table 16, a 𝜒𝜒2 goodness-of-fit test can also be conducted on 
these expected and observed frequencies (𝜒𝜒(3)

2  = 1.74, p = .63). This family of tests is known as 
limited information goodness-of-fit tests (see Maydeu-Olivares & Joe, 2006), as they use only 
subsets of items. This approach can continue to add dimensions (e.g., trivariate tables); 
however, as more dimensions are added, the number of possible responses increases 
exponentially (number of response patterns = 2items). Thus, the expected and observed counts at 
each possible response pattern start to become too small for there to be a stable 𝜒𝜒2 test. 

Because these tests can use only a subset of items, they are unable to give an evaluation of fit for 
the entire model. Unlike in item response theory, no test-characteristic curve can be used to 
aggregate across items. Theoretically, this could be achieved by using the model parameters to 
calculate the expected sum score for each latent class (similar to the test-characteristic curve 
indicating the expected sum score for each theta value). However, this is not feasible for the 
DLM assessment because of the administration design. The number of items tested per linkage 
level, and thus the total possible sum score, varies by student, depending on which testlet or 
testlets were administered. Thus, the expected score for a master depends on which testlets the 
student received. 

Therefore, the item-level indices have to be aggregated up to the model level using different 
methodology. This evaluation takes advantage of the additive properties of 𝜒𝜒2 distributions 
(Lancaster & Seneta, 2005), in that the sum of 𝜒𝜒2 values is also 𝜒𝜒2 distributed, with degrees of 
freedom equal to the sum of degrees of freedom from the component 𝜒𝜒2 values. Take, for 
example, an attribute measured by five items. As seen in Table 18, five univariate 𝜒𝜒2 values 
could be estimated (one for each item), and each test would have one degree of freedom. 
Aggregating to the model level, the univariate model-level fit could be assessed by a 𝜒𝜒2 value 
equal to the sum of the five item-level indices with five degrees of freedom, as illustrated. In 
Table 18, the 𝜒𝜒2 test at the model level is nonsignificant, indicating acceptable model fit. 
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Table 18. Example Model-Level Univariate Fit 

Item 𝝌𝝌𝟐𝟐 df p value 

1 0.16 1 .68 

2 1.20 1 .27 

3 0.87 1 .35 

4 0.98 1 .32 

5 1.03 1 .31 

Model 4.24 5 .52 

Note. df = degrees of freedom 

There are several limitations to this approach. First, 𝜒𝜒2 is perfectly additive only asymptotically. 
Given the low sample sizes on many of the items, this assumption is unlikely to hold. Also, for 
𝜒𝜒2 to be additive asymptotically, each 𝜒𝜒2 value must be independent of one another. For the 
univariate index, the assumption holds, as item responses are assumed to be independent, 
conditional upon mastery status. However, this is clearly not met when the bivariate or 
trivariate indices are aggregated in a manner similar to Table 18. This result is because the same 
item would be included in multiple item-level bivariate and trivariate indices. Therefore, the 
true sampling distribution of the aggregated 𝜒𝜒2 is unclear. Because of these limitations, Rupp, 
Templin, and Henson (2010) suggest using only the value of the aggregated 𝜒𝜒2 as an overall 
index of model fit, with larger values indicating worse fit. 

Because of the number of linkage levels that must be estimated for each model (i.e., fungible 
and nonfungible), it is difficult to summarize the aggregated 𝜒𝜒2 in any meaningful way. This is 
largely because the magnitude of 𝜒𝜒2 is dependent on the number of indices that contributed to 
the sum. For example, an aggregated 𝜒𝜒2 of 8.00 that came from 10 univariate tests, each with 
one degree of freedom, seems much more reasonable than if that number came from only two 
univariate tests. Therefore, to help summarize the findings in a useful way, p values are 
calculated for the model level 𝜒𝜒2 values, even though the asymptotic distribution is likely 
incorrect. This p value is used only as a flagging criterion to give a general idea of how much 
misfit exists across multiple linkage levels (i.e., content area or level), and not to make decisions 
about individual linkage levels specifically. The literature suggests that p values calculated from 
this reference asymptotic distribution are overly conservative, leading to the rejection of 
correctly specified models (Maydeu-Olivares & Joe, 2014). Therefore, when using this p value, it 
is likely that more misfit is identified than is actually present. Maydeu-Olivares and Joe (2014) 
proposed the use of the M2 statistic, which combines information from multiple indices (e.g., 
univariate, bivariate, trivariate) in a way that allows hypothesis tests with expected Type I error 
rates. However, given the sparseness of DLM data, bivariate and trivariate indices cannot be 
calculated for many linkage levels, making this approach unfeasible. 
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V.4.C. PROCEDURE FOR EVALUATING MODEL FIT 

V.4.C.i. Data 

The estimation of the models used data from the 2015–2016 and 2016–2017 spring science 
assessment windows. Field-test testlets from previous years were not included. 

V.4.C.ii. Method 

To evaluate model fit, a k-fold cross validation procedure was used, which is also known as v-
fold cross validation (see Arlot, 2010; Hastie, Tibshirani, & Friedman, 2009). The specific method 
was a stratified, fivefold procedure, whereby the data were divided into five sections and both 
the fungible and nonfungible models were estimated on four of the five sections. Model fit was 
then evaluated using the 20% of the data excluded from calibration. This process was repeated 
five times so that each subsection of the data was used as the validation set once (as 
demonstrated in Table 19). Before creating the five samples, the data were stratified at the item 
level to ensure that some data from all items were included in each of the subsamples. This 
process controlled variation that occurred because of item exclusion, which required a more 
vigorous investigation using a methodology similar to jackknife resampling (see Tukey, 1958). 

Table 19. Specification of k-Fold Estimation Procedure 

Calibration sets Validation set 

2, 3, 4, 5 1 

1, 3, 4, 5 2 

1, 2, 4, 5 3 

1, 2, 3, 5 4 

1, 2, 3, 4 5 

 

For each validation set, both absolute and relative fit were evaluated as described above. The 
results were then averaged across all five validation sets. This approach has the advantages of 
using all of the data for both estimation and validation, while still evaluating model fit using 
different data than were used for estimation. 

V.4.D. RESULTS 

V.4.D.i. Relative Fit 

To assess relative fit, a fungible and a nonfungible model were estimated for each of the 102 
linkage levels. For each linkage level, a likelihood ratio test was computed for the comparison of 
fungible (null) to nonfungible (alternative) model. For each test, if the p value of the likelihood 
ratio test was less than .05, the null model was rejected, meaning that the nonfungible model 
demonstrated better fit. The number of linkage levels that performed better in each model was 
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calculated for each of the validation sets and then averaged across the five sets of results. These 
findings are summarized in Table 20. 

Table 20. Average Number of Linkage Levels That Performed Better Over Five Validation Sets 

Linkage level 

Fungible vs. Nonfungible 

Fungible Nonfungible 

Initial    7.0 (0.7)   27.0 (0.7) 

Precursor   2.0 (1.0)   32.0 (1.0) 

Target   1.2 (0.8)   32.8 (0.8) 

Note. Parentheses indicate the standard deviation across the five validation sets. 

The results summarized in Table 20 indicate that the nonfungible model fit the data better than 
the fungible model for nearly all linkage levels across all subjects. Furthermore, these analyses 
provide evidence that, as expected, the increase in model fit provided by the extra parameters in 
the nonfungible model was statistically significant. This is shown by the large discrepancy in 
the number of linkage levels in which the nonfungible model was preferred to the fungible 
model across content areas and linkage levels. 

V.4.D.ii. Absolute Fit 

When using the limited information indices of model fit, 𝜒𝜒2 is calculated for each item or set of 
items within a linkage level (see Table 16 and Table 17). To calculate fit for the entire linkage 
level, the 𝜒𝜒2 values for each item or set of items are summed (as shown in Table 18). A p value 
for the linkage level is then calculated for the summed 𝜒𝜒2 values, with degrees of freedom equal 
to the sum of degrees of freedom from each of the item-level tests (Lancaster & Seneta, 2005). If 
the p value is less than .05, then the expected counts are significantly different from the 
observed counts, indicating poor model fit. Therefore, nonsignificant values are desired and 
significant values are flagged for evidence of poor model fit. Because assumptions of the 
reference asymptotic distribution are likely not met, the p value likely results in more misfit 
being identified than is actually present and is therefore only used for flagging to give a general 
summary of the amount of misfit that could be present in each model. 

Because results from the 𝜒𝜒2 test can be unreliable when cell counts are low, a minimum cell 
count of five was specified for each test. For example, in a linkage level measured by four items, 
there are six unique combinations of two items, meaning there are six possible bivariate indices. 
If any of the observed or expected counts for a response pattern in a given index were less than 
five, that index was not computed. Thus, it is possible that only four of the six possible bivariate 
indices would be computed. This means that when aggregating the item-level indices to the 
linkage level, only the four computed indices would be used. For DLM assessments, because of 
the sparseness of the data and the further sparseness introduced by the k-fold procedure, there 
were some linkage levels where no indices could be computed for the bivariate indices. 
However, there were no linkage levels for which trivariate indices could be computed, and 
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therefore they are not included in these results. The k-fold procedure has the benefit of using 
different data for the estimation and analysis of model fit. However, when using five folds, the 
analysis of model fit is limited to only 20% of the total data. This reduced sample size vastly 
limits the ability to calculate the higher order fit indices. 

Table 21 shows the number of linkage levels that were flagged for having poor model fit using 
each of the methods (univariate and bivariate), as well as the total number of linkage levels for 
which the index was computed. Results were averaged across all five validation sets. For 
example, in looking at the bivariate fit for the Initial linkage levels under the fungible model, 
the bivariate index could be calculated for 27 linkage levels on average, and of those, an average 
of six linkage levels showed poor model fit. 

There are several things to note from Table 21. First, as expected, the number of indices that 
could be computed decreases with added dimensions to the 𝜒𝜒2 (i.e., univariate to bivariate 
indices). This is because with more dimensions, there are more possible response patterns, 
making it more difficult to obtain the sample-size threshold for each. Overall, given the noted 
constraints, and based on the results that are calculable, the nonfungible model provides the 
best model fit. The nonfungible model results in the lowest rates of flags across content areas 
and linkage levels. 

In the fungible model, a large proportion of the indices computed were flagged for poor model 
fit, with an average of 60% flagged across linkage levels in the univariate index and 42% in the 
bivariate index. The nonfungible model, on the other hand, showed a fairly low percentage of 
linkage levels flagged for misfit (10% in the univariate index and 5% in the bivariate index). 
Additionally, it appears that misfit substantially decreased at the lower linkage levels for the 
nonfungible model (3% to 8% were flagged across both indices for Initial and Precursor linkage 
levels, compared to 22% to 64% for the fungible model). There is a clear increase in the 
percentage of indices flagged for misfit when moving from the Initial to Target levels. 
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Table 21. Average Number of Flagged Linkage Levels Using Limited Information Indices Over Five Validation Sets 

Linkage level 

Fungible  Nonfungible 

Univariate  Bivariate  Univariate  Bivariate 

Flags N  Flags N  Flags N  Flags N 

Initial    12.4 (2.3)   34.0 (0.0)    6.0 (1.2) 27.0 (0.0)    2.4 (2.1)   34.0 (0.0)    1.2 (1.3) 27.0 (0.0) 

Precursor   21.6 (1.5)   34.0 (0.0)  13.0 (1.9) 26.8 (0.4)    2.8 (1.3)   34.0 (0.0)    0.8 (0.8) 26.8 (0.4) 

Target   27.4 (1.9)   34.0 (0.0)  13.0 (1.4) 23.6 (0.9)    4.6 (2.4)   34.0 (0.0)    1.8 (0.8) 23.8 (1.1) 

Note. Parentheses indicate the standard deviation across the five validation sets. There are 34 Essential Elements for science. 



2016–2017 Technical Manual Update 
Dynamic Learning Maps 

Science Alternate Assessment 
 

Chapter V – Modeling  Page 53 

V.4.E. OPERATIONAL EVALUATION OF MODEL FIT 
Statistical significance should not be the only deciding factor when evaluating the 
appropriateness of a psychometric model; practical significance should also be considered. 
Specifically, for DLM assessments, the practical significance of model-fit results can be gauged 
by how much performance varies according to the scoring model used. Although k-fold cross 
validation is suggested for model building and evaluation, Hastie et al. (2009) suggested using 
all the data for the final model to be used operationally. Thus, following the best practices, all 
five subsets were used to create an operational fungible and nonfungible calibration to assess 
practical significance. 

One way to evaluate the effect on student results is to examine the structural parameter from 
each linkage level. This represents the base-rate probability of mastery for the linkage level and 
thus provides information about the proportion of students that are being classified as masters. 
If students are classified as masters at similar rates across models, then there is preliminary 
evidence that student results are not significantly affected by the choice of model. 

Figure 8 shows the difference in base-rate mastery probabilities across models by linkage level. 
Generally, science shows consistency in mastery rates across the three levels with more 
variability occurring at the Precursor level and very little variability at the Initial level. Overall, 
performance in science is expected to be fairly consistent across models. 
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Figure 8. Comparison of base-rate mastery probability in the fungible and nonfungible models. 

The consistency in results can be examined by comparing the number of linkage levels mastered 
by students when the fungible or the nonfungible model is used to score the assessment. As a 
natural extension to this analysis, the consortium-level impact data can also be compared across 
the two scoring models. For this analysis, each of the estimated models (i.e., fungible and 
nonfungible) was used to score the 2016–2017 operational assessment. For each model, the total 
linkage levels mastered by each student was calculated, and the percentage of students at each 
performance level for each grade and content area was determined using current operational 
cut points.3 Figure 9 shows the comparison of total linkage levels mastered, including 
correlations, for science assessments. Figure 9 demonstrates that student results are extremely 
consistent across scoring models, with all correlations ranging from .98 to .99. 

 

                                                      
3Cut points were set for each tested grade level within the elementary and middle school grade 

bands; one set of cut points was used for the high school band. 
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Figure 9. Total linkage levels mastered comparison. 

A comparison of the percentage of students achieving at each performance level is also 
provided. Figure 10 shows the change in the percentage of students at each grade. The 
combined standard error of the difference is shown in parentheses, as calculated by �𝜎𝜎12 + 𝜎𝜎22. 
For example, in fifth-grade science, 67.4% of students achieved at the Emerging category with 
the fungible model, compared to 64.9% with the nonfungible model, resulting in a change of 2.6 
percentage points and a standard error of 1.2 that is interpreted on the scale of the percentages 
rather than for the difference value itself. 
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Figure 10. Change in percentage of students achieving at each performance level.  
Note. Where applicable, highlighted cells indicate a change of more than 5 percentage points. 
The standard error of the difference is shown in parentheses. 

Similar to the comparison of the structural parameters, the science results are extremely 
consistent, with no performance levels flagged for changes of more than 5 percentage points. 

V.4.F. SUMMARY OF MODEL FIT ANALYSES 
This chapter presents two methods for evaluating model fit, along with comparisons of the 
operational effect of results obtained from the competing models. This included a relative fit 
analysis comparing model-to-model fit of the fungible and nonfungible models, and the 
absolute fit of each model was summarized via univariate and bivariate indices. 

Overall, the combination of relative and absolute fit from the limited information tests indicates 
that the data best support use of a nonfungible model. The nonfungible model showed 
significantly better fit on the majority of linkage levels when compared to the fungible model, 
and showed the fewest flags in the univariate and bivariate indices. However, a number of 
methodological constraints were noted, including using p values to evaluate the model-level 𝜒𝜒2 
values and limited sample sizes using the k-fold validation approach that call into question their 
use for operational decision-making purposes. Furthermore, the operational comparison of 
student results showed that the choice of model had little effect on student results. 
Additionally, there are practical benefits to using a more parsimonious model, including 
simpler and faster estimation for delivering student results on the timeline needed by states for 
accountability decision-making purposes. Finally, the recommendations of the DLM Technical 
Advisory Committee (TAC) have focused on exploring a Bayesian estimation procedure to help 
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address some of the methodological issues with the current approach to assessing model fit. 
Specific next steps in the research agenda are to implement a Bayesian estimation technique and 
reevaluate model fit for both the fungible and nonfungible models. Although the current 
evidence suggests that the nonfungible model fits the data better than the fungible model, 
methodological constraints of the current evaluation, the limited and varied effect of model 
choice on students’ results, and the practical benefits of the fungible model have led to the 
decision to retain the fungible model for operational scoring for the 2017–2018 academic year. 
Ongoing research is planned to identify an improved modeling strategy and corresponding 
assessment design. The plan to continue calibrating and scoring DLM assessments using a 
fungible model for the 2017–2018 administration was discussed with the DLM TAC during the 
August 2017 partner call, and the TAC indicated support for the plan. 

V.5. CONCLUSION 
In summary, the DLM modeling approach uses well-established research in the areas of 
Bayesian inference networks and DCM to determine student mastery of skills measured by the 
assessment. Latent class analyses are conducted for each linkage level of each EE to determine 
the probability of student mastery. Items within the linkage level are assumed to be fungible, 
with equivalent item-probability parameters for each class, due to the conceptual approach 
used to construct DLM testlets. For each linkage level, a mastery threshold of .8 is applied, 
whereby students with a posterior probability greater than or equal to the cut are deemed 
masters and students with a posterior probability below the cut are deemed non-masters. To 
ensure students are not excessively penalized by the modeling approach, in addition to 
posterior probabilities of mastery obtained from the model, two more scoring procedures are 
implemented: percentage correct at the linkage level and the two-down scoring rule. An 
analysis of the scoring rules indicates most students demonstrate mastery of the linkage level 
via their posterior probability values obtained from the modeling results. 

A review of model parameters indicates that for most linkage levels, the conditional probability 
of masters providing a correct response falls above .5, and for most linkage levels the 
conditional probability of non-masters providing a correct response falls below .5. Beginning in 
spring 2018, test-development teams will begin reviewing model-based flagging to identify 
potential areas that may introduce construct-irrelevant variance into the calculation of student 
results. 

Preliminary model-fit results indicated mixed support for the use of the current fungible 
scoring model. Because new modeling strategies may provide better alternatives for the 
assessment of model fit, current work focuses on developing a Bayesian estimation process for 
the fungible, nonfungible, and partially fungible models, whereby a partial equivalency model 
can be estimated. This approach would support improved methods for the assessment of model 
fit. Specifically, using Markov chain Monte Carlo estimation would allow the evaluation of 
model fit using posterior-predictive model checking (Gelman & Hill, 2006; Gelman, Meng, & 
Stern, 1996). The development of this procedure is underway; upon its completion, it will be 
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disseminated for review to the DLM TAC modeling subcommittee, a subgroup of TAC 
members focused on reviewing modeling-specific topic guides. 
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VI. STANDARD SETTING 
The standard-setting process for the Dynamic Learning Maps® (DLM®) Alternate System in 
science derived cut points for placing students into four performance levels. For a description of 
the process, including the development of policy performance level descriptors, the 3-day 
standard-setting meeting, evaluation of impact data and cut points, and development of grade-
specific performance level descriptors, see Chapter VI of the 2015–2016 Technical Manual – 
Science (Dynamic Learning Maps Consortium, 2017b). 
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VII. ASSESSMENT RESULTS 
Chapter VII of the 2016–2017 Technical Manual – Science (Dynamic Learning Maps® [DLM®] 
Consortium, 2017b) describes assessment results for the 2016–2017 academic year, including 
student participation and performance summaries and an overview of data files and score 
reports delivered to state partners. This chapter presents 2016–2017 student participation data; 
final results in terms of the percentage of students at each performance level; and subgroup 
performance by gender, race, ethnicity, and English learner (EL) status for the 2016–2017 
administration year. This chapter also reports the distribution of students by the highest linkage 
level mastered during 2016–2017. Finally, this chapter describes updates made to Individual 
Student Score Reports, data files, and quality control procedures during the 2016–2017 
operational year. For a complete description of and interpretive guides, see Chapter VII of the 
2015–2016 Technical Manual – Science (DLM Consortium, 2017b). 

VII.1. STUDENT PARTICIPATION 
The spring 2017 assessments were administered to 19,686 students in seven states and one 
Bureau of Indian Education school. Counts of students tested in each state are displayed in 
Table 22. The assessment sessions were administered by 7,841 educators in 5,577 schools and 
1,925 school districts. 

Table 22. Student Participation by State (N = 19,686) 

State Students (n) 

Alaska 214 

Illinois 4,812 

Iowa 1,042 

Kansas 1,200 

Maryland 1,674 

Miccosukee Indian School 8 

Missouri 3,676 

Oklahoma 2,327 

West Virginia 852 

Wisconsin 3,881 
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Table 23 summarizes the number of students tested in each grade during spring 2017. More 
than 6,000 students participated in each of the elementary and the middle school grade bands.4 
In high school, almost 7,500 students participated. The differences in grade-level participation 
within each band can be traced to differing state-level policies about the grade in which 
students are assessed. 

Table 23. Student Participation by Grade (N = 19,686) 

Grade Students (n) 

3 185 

4 909 

5 4,727 

6 284 

7 290 

8 5,806 

9 958 

10 2,005 

11 4,253 

12 269 

 

Table 24 summarizes the demographic characteristics of students who participated in the spring 
2017 administration. The majority of participants were male (65%) and white (63%). Only 3.6% 
of students were reported to be eligible for or monitored for EL services. Because teachers were 
not required to complete all of the student demographic information, some variables in the 
following tables are missing data. 

                                                      
4In an effort to increase science instruction beyond the tested grades, several states promoted 

participation in the science assessment at all grade levels (i.e., did not restrict participation to the grade 
levels required for accountability purposes). Grade levels 3 and 7 are not tested for accountability 
purposes in the current DLM science states. 
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Table 24. Demographic Characteristics of Participants 

Subgroup n % 

Gender 

Female 6,866 34.88 

Male 12,816 65.10 

Missing 4 0.02 

Race 

White 12,371 62.84 

African American 3,893 19.78 

Asian 635 3.23 

American Indian 624 3.17 

Alaska Native 106 0.54 

Two or more races 1,961 9.96 

Native Hawaiian or Pacific Islander 66 0.34 

Missing 30 0.15 

Hispanic ethnicity 

No 17,014 86.43 

Yes 2,606 13.24 

Missing 66 0.34 

English learner (EL) participation 

Not EL eligible or monitored 18,963 96.33 

EL eligible or monitored 719 3.65 

Missing 4 0.02 

 

VII.2. STUDENT PERFORMANCE 
Student performance on Dynamic Learning Maps (DLM) assessments is interpreted using cut 
points, determined during standard setting (see Chapter VI in the 2015–2016 Technical Manual – 
Science [DLM Consortium, 2017b]), which separate student scores into four performance levels. 
A student receives a performance level based on the total number of linkage levels mastered 
across the assessed Essential Elements (EEs). 
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For the 2016–2017 administration, student performance was reported using the same four 
performance levels approved by the DLM Consortium for the 2015–2016 year. 

• The student demonstrates Emerging understanding of and ability to apply content 
knowledge and skills represented by the EEs. 

• The student’s understanding of and ability to apply targeted content knowledge and 
skills represented by the EEs is Approaching the Target. 

• The student’s understanding of and ability to apply content knowledge and skills 
represented by the EEs is At Target. 

• The student demonstrates Advanced understanding of and ability to apply targeted 
content knowledge and skills represented by the EEs. 

VII.2.A. OVERALL PERFORMANCE 
Table 25 reports the performance distributions from the 2016–2017 spring administration for 
science. 

The 2016–2017 results were fairly consistent with 2015–2016 performance distributions with the 
majority of students categorized as either Emerging or Approaching the Target performance 
levels. At the elementary level, the percentage of students who demonstrated performance at 
the At Target or Advanced levels ranged from approximately 11% to 15%; in middle school the 
range was 18% to 21%; and in high school the percentages ranged from 8% to 23%. 
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Table 25. Percentage of Students by Grade and Performance Level 

Grade 
Emerging 

(%) 
Approaching 

(%) 
Target 

(%) 
Advanced 

(%) 
Target+Advanced 

(%) 

3 (n = 185) 76.2 10.3 8.7 4.9 13.6 

4 (n = 909) 72.1 17.1 8.6 2.3 10.9 

5 (n = 4,727) 67.4 17.9 13.6 1.1 14.7 

6 (n = 284) 61.3 20.4 14.1 4.2 18.3 

7 (n = 290) 56.6 22.8 16.9 3.8 20.7 

8 (n = 5,806) 58.1 23.7 16.0 2.2 18.2 

9 (n = 958) 62.4 24.4 11.4 1.8 13.2 

10 (n = 2,005) 46.4 30.4 16.7 6.5 23.2 

11 (n = 4,253) 58.7 26.6 12.3 2.4 14.7 

12 (n = 269) 76.2 15.6 7.1 1.1   8.2 

 

VII.2.B. SUBGROUP PERFORMANCE 
Performance-level results for subgroups, including groups based on gender, race, ethnicity, and 
EL status, were computed. 

The distribution of students across performance levels was examined using demographic 
subgroups. Table 26 summarizes the disaggregated frequency distributions for science 
collapsed across all assessed grade levels. Although each state has its own rules for minimum 
student counts needed to support public reporting of results, small counts are not suppressed 
here because results are aggregated across states and individual students cannot be identified. 
Rows labeled Missing indicate the student’s demographic data were not entered into the system. 
Overall, fewer demographic data were missing in 2016–2017 than in the previous year. 

Table 26. Students at Each Performance Level by Demographic Subgroup (N = 19,686) 

Subgroup 

Emerging Approaching Target Advanced 

n % n % n % n % 

Gender 

Female 4,267 62.1 1,676 24.4 793 11.5 130 1.9 

Male 7,655 59.7 2,857 22.3 1,950 15.2 354 2.8 

Missing 1 25.0 2 50.0 1 25.0 n/a n/a 
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Subgroup 

Emerging Approaching Target Advanced 

n % n % n % n % 

Race 

White 7,281 58.9 2,901 23.5 1,847 14.9 342 2.8 

African 
American 

2,439 62.7 902 23.2 484 12.4 68 1.7 

Asian 468 73.7 127 20.0 36 5.7 4 0.6 

American 
Indian 

296 47.4 136 21.8 152 24.4 40 6.4 

Alaska 
Native 

69 65.1 24 22.6 13 12.3 n/a n/a 

Two or 
more races 

1,319 67.3 416 21.2 197 10.0 29 1.5 

Native 
Hawaiian 
or Pacific 
Islander 

41 62.1 17 25.8 7 10.6 1 1.5 

Missing 10 33.3 12 40.0 8 26.7 n/a n/a 

Hispanic ethnicity 

No 10,140 59.6 3,944 23.2 2,480 14.6 450 2.6 

Yes 1,746 67.0 574 22.0 257 9.9 29 1.1 

Missing 37 56.1 17 25.8 7 10.6 5 7.6 

English learner (EL) participation 

Not EL 
eligible or 
monitored 

11,477 60.5 4,347 22.9 2,665 14.1 474 2.5 

EL eligible 
or 
monitored 

445 61.9 186 25.9 79 11.0 9 1.3 

Missing 1 25.0 2 50.0 n/a n/a 1 25.0 
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VII.2.C. LINKAGE-LEVEL MASTERY 
As described earlier in the chapter, overall performance in the content area is calculated based 
on the number of linkage levels mastered across all EEs. Based on the scoring method, for each 
EE the highest linkage level the student mastered can be identified. This means that a student 
may be classified as a master of zero, one (Initial), two (Initial and Precursor), or three (Initial, 
Precursor, and Target) linkage levels. This section summarizes the distribution of students by 
highest linkage level mastered across all EEs in each grade. For each grade band, the numbers 
of students who showed no evidence of mastery, Initial-level mastery, Precursor-level mastery 
and Target-level mastery (as the highest level of mastery) were summed across all EEs and 
divided by the total number of students assessed to get the proportion of students who 
mastered each linkage level. 

Table 27 reports the percentage of students who mastered each linkage level as the highest 
linkage level across all EEs for each grade. For example, across all third-grade EEs, 40.5% of the 
time the highest level that students mastered was the Initial level. The percentage of students 
who mastered as high as the Target linkage level ranged from approximately 26% in third grade 
to 47% in tenth grade. 

Table 27. Percentage of Students Demonstrating Highest Linkage Level Mastered Across 
Essential Elements by Grade 

Grade 

Linkage level 

No evidence (%) Initial (%) Precursor (%) Target (%) 

3 (n = 185) 14.6 40.5 18.9 25.9 

4 (n = 909) 8.1 43.2 18.6 30.0 

5 (n = 4,727) 4.2 40.6 18.3 36.9 

6 (n = 284) 9.2 25.4 31.7 33.8 

7 (n = 290) 8.6 23.1 24.5 43.8 

8 (n = 5,806) 4.9 21.0 32.3 41.8 

9 (n = 958) 8.1 34.9 26.7 30.3 

10 (n = 2,005) 5.8 24.6 22.4 47.1 

11 (n = 4,253) 6.2 32.5 26.4 35.0 

12 (n = 269) 21.2 43.5 13.4 21.9 
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VII.3. DATA FILES 
Four data files, made available to DLM state partners, summarized results from the 2016–2017 
year. Similar to the previous year, the General Research File (GRF) contained student results, 
including each student’s highest linkage level mastered for each EE and final performance level 
for the subject for all students who completed any testlets. During the 2016–2017 year, the GRF 
was restructured to include one row per student per subject, with a corresponding EE crosswalk 
provided to identify the EE reported in each column, generically named EE1 – EE26. 

In addition to the GRF, several supplemental files were delivered. The Incident File listed 
students who were potentially affected by an administration incident during the spring window 
(see Chapter IV of this manual) using the same structure as the prior year. Similarly, the Special 
Circumstances File was retained in 2016–2017, which provided information about which 
students and EEs were affected by extenuating circumstances (e.g., chronic absences), as 
defined by each state. A new supplemental file was also delivered to identify exited students 
who did not reenroll for the remainder of the window. 

Consistent with 2015–2016, state partners were provided with a 2-week review window 
following delivery of the GRF to invalidate student records. Once final GRFs were submitted 
back to DLM staff, the final GRF was uploaded to Educator Portal. 

VII.4. SCORE REPORTS 
The DLM Consortium provides assessment results to all member states to report to 
parents/guardians and to educators at state and local education agencies. Individual Student 
Score Reports were provided to educators and parents/guardians. Several aggregated reports 
were provided to state and local education agencies, including reports for the classroom, school, 
district, and state. No changes were made to the aggregated report structure during 2017; 
however, district and state reports were generated in Educator Portal following final GRF 
upload rather than being generated outside the system by the score-report program. Changes to 
the Individual Student Score Reports are summarized below. For a complete description of 
score reports, including aggregated reports, see Chapter VII of the 2014–2015 Technical Manual – 
Integrated Model (DLM Consortium, 2016c). 

VII.4.A. INDIVIDUAL STUDENT SCORE REPORTS 
During the 2016–2017 year, minor changes were made to the Individual Student Score Reports. 

One change to the content of the Performance Profile in science was the inclusion of grade-level 
performance level descriptors (PLDs). These grade-level PLDs replaced the bulleted list of skills 
mastered used in 2015–2016. The grade-level PLDs were developed after standard setting was 
conducted in 2016 to describe the types of skills typically mastered by students in a given 
performance level. 
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One change to the Learning Profile5 was the adjustment of shading for “No evidence of mastery 
on this Essential Element” and “Essential Element not tested” to appear in the Essential Element 
column rather than the first-level cell to indicate the shading applied to the entire EE. 

A sample Individual Student Score Report reflecting the 2017 changes is provided in Figure 11. 

 

 

                                                      
5Consistent with 2015–2016, only states that follow the integrated assessment model for DLM 

English language arts and mathematics receive the Learning Profile in all three subject areas. Year-end 
states requested this information be omitted for science to be consistent with their ELA and mathematics 
reports. 
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Figure 11. Page 1 of the performance profile for 2016–2017. 
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VII.5. QUALITY CONTROL PROCEDURES FOR DATA FILES AND SCORE REPORTS 
Quality control (QC) procedures were updated in 2017 to include a score-report viewer tool to 
facilitate the manual quality control checks. No changes were made to automated QC checks for 
2017. For a complete description of QC procedures, see Chapter VII in the 2015–2016 Technical 
Manual – Science (DLM Consortium, 2017b). 

VII.5.A. MANUAL QUALITY CONTROL CHECKS 
A PDF viewer tool was developed to increase the speed and efficiency of the manual QC 
process. Based on the data file fed to the program, reports were randomly selected from a 
relevant subset (model, grade, and content area) one at a time. When a report was selected, its 
data row from the GRF was displayed and the report was automatically opened by the tool so 
the two could be compared very quickly without having to navigate manually through folders 
where reports were stored. After a QC person finished reviewing the selected report, they 
clicked through and the tool then continued to the next report and its corresponding data row 
for review. This process was repeated until a minimum threshold for number of reports 
checked was met in the relevant subset.
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VIII. RELIABILITY 
Chapter VIII of the 2015–2016 Technical Manual – Science (Dynamic Learning Maps® [DLM®] 
Consortium, 2017b) describes the methods used to calculate reliability and provides results at 
six reporting levels. This chapter provides a high-level summary of the methods used to 
calculate reliability, along with updated evidence from the 2016–2017 administration year for 
six levels, consistent with the levels of reporting. 

For a complete description of the simulation-based methods used to calculate reliability for 
Dynamic Learning Maps (DLM) assessments, including the psychometric background and a 
detailed description of the methods used, see the 2015–2016 Technical Manual Update – Science 
(DLM Consortium, 2017b). 

VIII.1. BACKGROUND INFORMATION ON RELIABILITY METHODS 
The reliability information presented in this chapter adheres to guidance given in the Standards 
for Educational and Psychological Testing (American Educational Research Association [AERA], 
American Psychological Association, & National Council on Measurement in Education, 2014). 
Simulation studies were conducted to assemble reliability evidence according to the Standards’ 
assertion that “the general notion of reliability/precision is defined in terms of consistency over 
replications of the testing procedure” (AERA et al., 2014, p. 35). The DLM reliability evidence 
reported here supports “interpretation for each intended score use,” as Standard 2.0 dictates 
(AERA et al., 2014, p. 42). The “appropriate evidence of reliability/precision” (AERA et al., 2014, 
p. 42) was assembled using a nontraditional methodology that aligned to the design of the 
assessment and interpretation of results. 

Consistent with the levels at which DLM results are reported, this chapter provides results for 
six types of reliability evidence. For more information on DLM reporting, see Chapter VII of the 
2015–2016 Technical Manual –Science (DLM Consortium, 2017b). The types of reliability evidence 
for DLM assessments include: (a) classification to overall performance level (i.e., performance-
level reliability); (b) the total number of linkage levels mastered for the content area (i.e., 
content-area reliability); (c) the number of linkage levels mastered within each domain (i.e., 
domain reliability); (d) the number of linkage levels mastered within each Essential Element 
(EE; i.e., EE reliability); (e) the classification accuracy of each linkage level within each EE (i.e., 
linkage-level reliability); and (f) classification accuracy summarized for the three linkage levels 
(i.e., conditional evidence by linkage level). As described in the next section, reliability evidence 
comes from simulation studies in which model-specific test data are generated for students with 
known levels of attribute mastery. 

VIII.2. METHODS OF OBTAINING RELIABILITY EVIDENCE 
Standard 2.1: “The range of replications over which reliability/precision is being evaluated 
should be clearly stated, along with a rationale for the choice of this definition, given the testing 
situation” (AERA et al., 2014, p. 42). 
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The simulation used to estimate reliabilities for DLM versions of scores and classifications 
considers the unique design and administration of DLM assessments. The use of simulation is 
necessitated by two factors: the assessment blueprint and the classification-based results that 
such administrations give. Because of the limited number of items students complete to cover 
the blueprint, students take only minimal items per EE. The reliability simulation replicates 
DLM versions of scores from actual examinees based upon the actual set of items each examinee 
took. Therefore, this simulation provides a replication of the administered items for the 
examinees. Because the simulation is based on a replication of the same items that were 
administered to examinees, the two administrations are perfectly parallel. 

VIII.2.A. RELIABILITY SAMPLING PROCEDURE 
The simulation design that was used to obtain the reliability estimates developed a resampling 
design to mirror existing trends in the DLM assessment data. In accordance with Standard 2.1, 
the sampling design used the entire set of operational testing data to generate simulated 
examinees. Using this process guarantees that the simulation takes on characteristics of the 
DLM operational test data that are likely to affect the reliability results. For one simulated 
examinee, the process was as follows: 

1. Draw with replacement the student record of one student from the operational testing 
data. Use the student’s originally scored pattern of linkage-level mastery and non-mastery 
as the true values for the simulated student data. 
2. Simulate a new set of item responses to the set of items administered to the student in 
the operational testlet. Item responses are simulated from calibrated-model parameters6 for 
the items of the testlet, conditional on the profile of linkage-level mastery or non-mastery for 
the student. 
3. Score the simulated-item responses using the operational DLM scoring procedure (see 
Chapter V of the 2015–2016 Technical Manual – Science (DLM Consortium, 2017b) for more 
information),7 producing estimates of linkage-level mastery or non-mastery for the 
simulated student. 
4. Compare the estimated linkage-level mastery or non-mastery to the known values from 
Step 2 for all linkage levels for which the student was administered items. 
5. Repeat Steps 1 through 4 for 2,000,000 simulated students. 

Figure 12 shows Steps 1 through 4 of the simulation process as a flow chart. 

 

                                                      
6Calibrated-model parameters were treated as true and fixed values for the simulation. 
7All three scoring rules were included when scoring the simulated responses to be consistent with 

the operational scoring procedure. The scoring rules are described further in Chapter V of this manual. 
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Figure 12. Simulation process for creating reliability evidence.  
Note. LL = linkage level. 

VIII.2.B. RELIABILITY EVIDENCE 
Standard 2.2: “The evidence provided for the reliability/precision of the scores should be 
consistent with the domain of replications associated with the testing procedures, and with the 
intended interpretations for use of the test scores” (AERA et al., 2014, p. 42). 

Standard 2.5: “Reliability estimation procedures should be consistent with the structure of the 
test” (AERA et al., 2014, p. 43). 

Standard 2.12: “If a test is proposed for use in several grades or over a range of ages, and if 
separate norms are provided for each grade or each age range, reliability/precision data should 
be provided for each age or grade-level subgroup, not just for all grades or ages combined” 
(AERA et al., 2014, p. 45). 

Standard 2.16: “When a test or combination of measures is used to make classification decisions, 
estimates should be provided of the percentage of test-takers who would be classified in the 
same way on two [or more] replications of the procedure” (AERA et al., 2014, p. 46). 
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Standard 2.19: “Each method of quantifying the reliability/precision of scores should be 
described clearly and expressed in terms of statistics appropriate to the method” (AERA et al., 
2014, p. 47). 

Reliability evidence is given for six levels of data: (a) performance-level reliability, (b) content-
area reliability, (c) domain reliability, (d) EE reliability, (e) linkage-level reliability, and (f) 
conditional reliability by linkage level. With 34 EEs, each with three linkage levels, 102 analyses 
were conducted to summarize reliability. Because of the number of analyses, the reported 
evidence will be summarized in this chapter. Full reporting of reliability evidence for all 102 
linkage levels and 34 EEs is provided in an online appendix 
(http://dynamiclearningmaps.org/reliabevid). The full set of evidence is provided in accordance 
with Standard 2.12. 

Reporting reliability at six levels ensures that the simulation and resulting reliability evidence 
were performed in accordance with Standard 2.2. Providing reliability evidence for each of the 
six levels also ensures that these reliability estimation procedures meet Standard 2.5. 

VIII.2.B.i. Performance-Level Reliability Evidence 

Four performance levels were used to report results from DLM assessments. The total linkage 
levels mastered in each content area is summed, and cut points are applied to distinguish 
between performance categories. 

Performance-level reliability provides evidence for how reliably students were classified into 
the four performance levels for each content area and grade level. Because performance level is 
based on total linkage levels mastered, large fluctuations in the number of linkage levels 
mastered or fluctuation around the cut points could affect how reliably students are classified to 
performance categories. The performance-level reliability evidence is based on the true and 
estimated performance level (based on estimated total number of linkage levels mastered and 
predetermined cut points). Three statistics are included to provide a comprehensive summary 
of results. The specific metrics were chosen because of their interpretability. 

1. The polychoric correlation between the true and estimated performance level within a 
grade and content area 
2. The correct classification rate between the true and estimated performance level within a 
grade and content area 
3. The correct classification kappa between the true and estimated performance level 
within a grade and content area 

Table 28 shows this information across all grades and content areas. Polychoric correlations 
between true and estimated performance levels ranged from .927 to .974. Correct classification 
rates ranged from .853 to .910 and Cohen’s kappa values were between .740 and .873. These 
results indicate that the DLM scoring procedure of assigning and reporting performance levels 
based on total linkage levels mastered results in reliable classification of students to 
performance-level categories. 

http://dynamiclearningmaps.org/reliabevid
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Table 28. Summary of Performance-Level Reliability Evidence 

Grade 
Polychoric 
correlation 

Correct 
classification rate Cohen’s kappa 

3 .947 .910 .787 

4 .930 .904 .741 

5 .934 .909 .740 

6 .933 .853 .774 

7 .950 .888 .798 

8 .927 .872 .758 

9 .963 .881 .858 

10 .965 .857 .868 

11 .965 .876 .862 

12 .974 .908 .873 

 

VIII.2.B.ii. Content-Area Reliability Evidence 

Content-area reliability provides consistency evidence for the number of linkage levels 
mastered across all EEs for a given grade level in science. Because students are assessed on 
multiple linkage levels within a content area, content-area reliability evidence is similar to 
reliability evidence for testing programs that use summative assessments to describe content-
area performance. That is, the number of linkage levels mastered within a content area can be 
thought of as analogous to the number of items answered correctly (e.g., total score) in a 
different type of testing program. 

Content-area reliability evidence compares the true and estimated numbers of linkage levels 
mastered across all tested levels in science. Reliability is reported with three summary numbers. 

1. The Pearson correlation between the true and estimated numbers of linkage levels 
mastered 
2. The correct classification rate for which linkage levels were mastered as averaged across 
all simulated students 
3. The correct classification kappa for which linkage levels were mastered as averaged 
across all simulated students 

Table 29 shows the three summary values for each grade. Classification-rate information is 
provided in accordance with Standard 2.16. The two summary statistics included in Table 29 
also meet Standard 2.19. The correlation between true and estimated numbers of linkage levels 
mastered, ranged from .884 to .954. Average student correct classification rates ranged from .977 
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to .990 and average student Cohen’s kappa values ranged from .954 to .980. These values 
indicate that the DLM scoring procedure of reporting the number of linkage levels mastered 
provides reliable results of student performance. 

Table 29. Summary of Content-Area Reliability Evidence by Grade 

Grade 
Linkage levels 

mastered correlation 
Average student 

correct classification 
Average student 
Cohen’s kappa 

3 .914 .987 .975 

4 .884 .985 .970 

5 .899 .983 .966 

6 .911 .979 .957 

7 .907 .977 .954 

8 .892 .978 .955 

9 .943 .985 .972 

10 .949 .980 .961 

11 .945 .984 .970 

12 .954 .990 .980 

 

VIII.2.B.iii. Domain Reliability Evidence 

Within the content area of science, students are assessed on EEs in three domains. Because 
Individual Student Score Reports summarize the number and percentage of linkage levels 
students mastered for each science domain (see Chapter VII of this manual for more 
information), reliability evidence is also provided for each domain. 

Domain reliability provides consistency evidence for the number of linkage levels mastered 
across all EEs in each science domain for each grade. Because domain reporting summarizes the 
total linkage levels a student mastered within a domain, the statistics reported for domain 
reliability are the same as those used for content-area reliability. 

Domain reliability evidence compares the true and estimated numbers of linkage levels 
mastered across all tested levels for each of the three domains. Reliability is reported with three 
summary numbers. 

1. The Pearson correlation between the true and estimated numbers of linkage levels 
mastered within a domain 
2. The correct classification rate for which linkage levels were mastered as averaged across 
all simulated students for each domain 
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3. The correct classification kappa for which linkage levels were mastered as averaged 
across all simulated students for each domain 

Table 30 shows the three summary values for each domain by grade. Values ranged from .621 to 
.998, indicating that the DLM method of reporting the total and percentage of linkage levels 
mastered by domain generally results in values that can be reliably reproduced. 

Table 30. Summary of Science-Domain Reliability Evidence by Grade 

Grade Domain 
Linkage levels 

mastered correlation 
Average student 

correct classification 
Average student 
Cohen's kappa 

3 ESS .621 .998 .998 

3 LS .647 .996 .995 

3 PS .895 .996 .994 

4 ESS .634 .998 .997 

4 LS .647 .996 .995 

4 PS .868 .995 .992 

5 ESS .675 .998 .997 

5 LS .660 .996 .995 

5 PS .885 .995 .992 

6 ESS .807 .997 .996 

6 LS .710 .990 .985 

6 PS .916 .996 .995 

7 ESS .806 .997 .997 

7 LS .718 .989 .983 

7 PS .909 .996 .995 

8 ESS .810 .997 .997 

8 LS .682 .990 .985 

8 PS .905 .996 .995 

9 ESS .678 .996 .994 

9 LS .810 .996 .995 

9 PS .906 .997 .996 

10 ESS .679 .995 .994 
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Grade Domain 
Linkage levels 

mastered correlation 
Average student 

correct classification 
Average student 
Cohen's kappa 

10 LS .833 .995 .993 

10 PS .906 .996 .995 

11 ESS .688 .996 .994 

11 LS .822 .995 .994 

11 PS .898 .996 .95 

12 ESS .731 .997 .996 

12 LS .853 .996 .995 

12 PS .924 .997 .996 

Note. ESS = Earth and space science; LS = life science; PS = physical science. 

VIII.2.B.iv. Essential-Element Reliability Evidence 

Moving from higher-level aggregation to EEs, the reliability evidence shifts slightly. That is, 
because EEs are collections of linkage levels with an implied order, EE-level results are reported 
as the highest linkage level mastered per EE. If one considers content-area scores as total scores 
from an entire test, evidence at the EE level is more fine-grained than reporting at a content-area 
strand level, which is commonly reported for other testing programs. EEs are the specific 
standards within the content area itself. 

Three statistics are used to summarize reliability evidence for EEs. 

1. The polychoric correlation between true and estimated numbers of linkage levels 
mastered within an EE 
2. The correct classification rate for the number of linkage levels mastered within an EE 
3. The correct classification kappa for the number of linkage levels mastered within an EE 

Because there are 34 EEs, the summaries reported herein are based on the number and 
proportion of EEs that fall within a given range of an index value. Results are given in both 
tabular and graphical forms. Table 31 and Figure 13 provide proportions and the number of 
EEs, respectively, that fall within prespecified ranges of values for the three reliability summary 
statistics (i.e., correct classification rate, kappa, and correlation). In general, the reliability 
summaries for number of linkage levels mastered within EEs show strong evidence of 
reliability. 
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Table 31. Reliability Summaries Across All Essential Elements (EEs): Proportion of EEs Falling 
Within a Specified Index Range 

Reliability 
index 

Index range 

< .60 .60−.64 .65−.69 .70−.74 .75−.79 .80−.84 .85−.89 .90−.94 .95−1.0 

Polychoric 
correlation  

.000 .000 .074 .037 .259 .037 .296 .111 .185 

Correct 
classification 
rate 

.000 .000 .000 .000 .000 .259 .407 .296 .037 

Kappa .111 .111 .148 .111 .074 .222 .111 .037 .074 

 

 

 
Figure 13. Number of linkage levels mastered within Essential Element reliability summaries. 
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VIII.2.B.v. Linkage-Level Reliability Evidence 

Evidence at the linkage level comes from the comparison of true and estimated mastery statuses 
for each of the 102 linkage levels in the operational DLM assessment.8 This level of reliability 
reporting is even more fine-grained than the EE level. While it does not have a comparable 
classical test theory or item response theory analog, its inclusion is important because it is the 
level where mastery classifications are made for DLM assessments. 

As an example, Table 32 shows a simulated table from one linkage level of an EE. 

Table 32. Example of True and Estimated Mastery Status From Reliability Simulation 

 Estimated mastery status 

Non-master Master 

True mastery status 
Non-master 574 235 

Master 83 592 

 

The summary statistics reported are all based on tables like this one: the comparison of true and 
estimated mastery statuses across all simulated examinees. As with any contingency table, a 
number of summary statistics are possible. 

For each statistic, figures are given comparing the results of all 102 linkage levels. Three 
summary statistics are presented: 

1. The tetrachoric correlation between estimated and true mastery statuses 
2. The correct classification rate for the mastery status of each linkage level 
3. The correct classification kappa for the mastery status of each linkage level 

                                                      
8The linkage-level reliability evidence presented here focuses on consistency of measurement given 

student responses to items. For more information on how students were assigned linkage levels during 
assessment, see Chapter IV in the 2015–2016 Technical Manual – Science (DLM Consortium, 2017). 



2016–2017 Technical Manual Update 
Dynamic Learning Maps 

Science Alternate Assessment 
 

Chapter VIII – Reliability  Page 81 

As there are 102 total linkage levels across all 34 EEs, the summaries reported herein are based 
on the proportion and number of linkage levels that fall within a given range of an index value. 
Results are given in both tabular and graphical form.  

Table 33 and 

 
Figure 14 provide proportions and number of linkage levels, respectively, that fall within 
prespecified ranges of values for the three reliability summary statistics (i.e., correct 
classification rate, correlation, and kappa). The kappa value and tetrachoric correlation for eight 
linkage levels could not be computed because all students were labeled as masters of the 
linkage level. 

The correlations and correct classification rates show reliability evidence for the classification of 
mastery at the linkage level. Across all linkage levels, zero had a tetrachoric correlation value 
below .6, zero had a correct classification rate below .6, and nine had a kappa value below .6. 
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Table 33. Reliability Summaries Across All Linkage Levels: Proportion of Linkage Levels Falling 
Within a Specified Index Range 

Reliability 
index 

Index range 

< .60 .60−.64 .65−.69 .70−.74 .75−.79 .80−.84 .85−.89 .90−.94 .95−1.0 

Tetrachoric 
correlation 

.000 .000 .014 .014 .055 .027 .096 .247 .548 

Correct 
classification 
rate 

.000 .000 .000 .000 .000 .037 .173 .444 .346 

Kappa .123 .055 .096 .164 .178 .137 .151 .041 .055 
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Figure 14. Linkage-level reliability summaries. 

VIII.2.B.vi. Conditional Reliability Evidence by Linkage Level 

Traditional assessment programs often report conditional standard errors of measurement to 
indicate how the precision of measurement differs along the score continuum. The DLM 
assessment system does not report total- or scale-score values. However, because DLM 
assessments were designed to span the continuum of students’ varying skills and abilities as 
defined by the three linkage levels, evidence of reliability can be summarized for each linkage 
level to approximate conditional evidence over all EEs, similar to a conditional standard error of 
measurement for a total score. 

Conditional reliability evidence by linkage level is based on the true and estimated mastery 
statuses for each linkage level, summarized by each of the three levels. Results are reported 
using the same three statistics used for the overall linkage-level reliability evidence (tetrachoric 
correlation, correct classification rate, and kappa). 

Figure 15 provides the number of linkage levels that fall within prespecified ranges of values for 
the three reliability summary statistics (i.e., tetrachoric correlation, correct classification rate, 
and kappa). The correlations and correct classification rates generally indicate that all three 
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linkage levels provide reliable classifications of student mastery; results are fairly consistent 
across all linkage levels for each of the three statistics reported. 

 
Figure 15. Conditional reliability evidence summarized by linkage level. 

VIII.3. CONCLUSION 
In summary, reliability measures for the DLM science assessment system addressed the 
standards set forth by AERA et al., 2014. The methods used were consistent with assumptions 
of DCM and yielded evidence to support the argument for internal consistency of the program 
for each level of reporting. Because the reliability results are dependent upon the model used to 
calibrate and score the assessment, any changes to the model or evidence obtained when 
evaluating model fit also affect reliability results. As with any selected methodology for 
evaluating reliability, the current results assume that the model and model parameters used to 
score DLM assessments are correct. However, unlike other traditional measures of reliability 
that often require unattainable assumptions about equivalent test forms, the simulation method 
described in this chapter provides a replication of identical test items (i.e., perfectly parallel 
forms) which theoretically reduces the amount of variance that may be found in test scores 
across administrations. Furthermore, while results in general may be higher than those 
observed for some traditionally scored assessments, research suggests that DCMs have higher 
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reliability with fewer items (e.g., Templin & Bradshaw, 2013), suggesting the results are 
expected.
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IX. VALIDITY STUDIES 
The preceding chapters and the 2015–2016 Technical Manual – Science (Dynamic Learning Maps® 
[DLM®] Consortium, 2017b) provide evidence in support of the overall validity argument for 
results produced by the Dynamic Learning Maps (DLM) Alternate Assessment System. Chapter 
IX presents additional evidence collected during 2016–2017 for the five critical sources of 
evidence described in Standards for Educational and Psychological Testing (AERA et al., 2014): 
evidence based on test content, response process, internal structure, relation to other variables, 
and consequences of testing. Additional evidence can be found in Chapter IX of the 2015–2016 
Technical Manual – Science (DLM Consortium, 2017b). 

IX.1. EVIDENCE BASED ON TEST CONTENT 
Evidence based on test content relates to the evidence “obtained from an analysis of the 
relationship between the content of the test and the construct it is intended to measure” (AERA 
et al., 2014, p. 14). The validity study presented in this section summarizes data collected during 
2016–2017 regarding student opportunity to learn the assessed content. For additional evidence 
based on test content, including the alignment of test content to content standards, see Chapter 
IX of the 2015–2016 Technical Manual – Science (DLM Consortium, 2017b). 

IX.1.A. OPPORTUNITY TO LEARN 
After completing administration of the spring 2017 operational assessments, teachers were 
invited to complete a survey about the assessment administration process (see Chapter IV of 
this manual for more information on recruitment and response rates). The survey included 
three blocks of items. The first and third blocks were fixed forms assigned to all teachers. For 
the second block, teachers received one randomly assigned section. 

The survey served several purposes.9 One item provided preliminary information about the 
relationship between students’ learning opportunities before testing and the test content (i.e., 
testlets) they encountered on the assessment. The survey asked teachers to indicate the extent to 
which they judged test content to align with their instruction, across all testlets; Table 34 reports 
the results. Approximately 50% of teachers (n = 6,990) reported that most or all science testlets 
matched instruction. More specific measures of instructional alignment are planned. 

Table 34. Teacher Ratings of Portion of Testlets That Matched Instruction 

None 
Some  

(< half) 
Most  

(> half) All 
Did not 

administer 

n % n % n % n % n % 

1,454 10.4 4,569 32.6 4,744 33.8 2,246 16.0 1,019 7.3 

                                                      
9Results for other survey items are reported later in this chapter and in Chapter IV in this manual. 
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The survey also asked teachers to indicate the approximate number of hours they spent 
instructing students on each of the DLM science domains and in the science and engineering 
practices. Teachers responded using a five-point scale: none, 1–10 hours, 11–20 hours, 21–30 hours, 
or more than 30 hours.  

Table 35 and Table 36 indicate the amount of instructional time spent on DLM science domains 
and science and engineering practices, respectively. For all three science domains, the most 
commonly selected responses were 1–10 hours and 11–20 hours. The most commonly selected 
response for the science and engineering practices was 1–10 hours. 

Table 35. Instruction Time Spent on Science Domains, in Hours 

Domain 

Number of hours 

0 1–10 11–20 21–30 >30 

n %   n % n % n % n % 

Physical science 454 15.7 1,114 38.6 643 22.3 376 13.0 302 10.5 

Life science 352 12.2 939 32.6 714 24.8 443 15.4 436 15.1 

Earth and space science 305 10.6 979 34.0 744 25.8 481 16.7 372 12.9 
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Table 36. Instruction Time Spent on Science and Engineering Practices, in Hours 

Science and engineering 
practices 

Number of hours 

0 1–10 11–20 21–30 >30 

n % n % n % n % n % 

Develop and use models 571 19.9 1,202 41.8 586 20.4 320 11.1 195 6.8 

Plan and carry out 
investigations 

522 18.3 1,173 41.1 620 21.7 326 11.4 215 7.5 

Analyze and interpret 
data 

442 15.5 1,075 37.6 675 23.6 401 14.0 267 9.3 

Use mathematics and 
computational thinking 

438 15.3 974 34.1 583 20.4 438 15.3 423 14.8 

Construct explanations 
and design solutions 

714 24.9 1,109 38.7 548 19.1 305 10.6 191 6.7 

Engage in argument from 
evidence 

951 33.2 1,041 36.4 450 15.7 244 8.5 175 6.1 

Obtain, evaluate, and 
communicate information 

477 16.6 1,048 36.6 655 22.9 376 13.1 309 10.8 

 

Results from the teacher survey were also correlated with total linkage levels mastered by 
domain, as reported on Individual Student Score Reports. While a direct relationship between 
amount of instructional time and number of linkage levels mastered in the area is not expected, 
as some students may spend a large amount of time on an area and demonstrate mastery at the 
lowest linkage level for each Essential Element, it is generally expected that students who 
mastered more linkage levels in the area would also have spent more instructional time in the 
area. 

Table 37 summarizes the Pearson correlations between domain instructional time and linkage 
levels mastered in the science domain. Based on guidelines from Cohen (1988), the observed 
correlations were small. 
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Table 37. Correlation Between Instruction Time in Science Domain and Linkage Levels 
Mastered in That Domain 

Domain Correlation with instruction time 

Physical science .20 

Life science .20 

Earth and space science .21 

IX.2. EVIDENCE BASED ON RESPONSE PROCESSES 
The study of the response processes of test-takers provides evidence about the fit between the 
test construct and the nature of how students actually experience test content (AERA et al., 
2014). The validity studies presented in this section include teacher-survey data collected in 
spring 2017 regarding students’ abilities to respond to testlets and test-administration 
observation data collected during 2016–2017. For additional evidence based on response 
process, including studies on student and teacher behaviors during testlet administration and 
evidence of fidelity of administration, see Chapter IX of the 2015–2016 Technical Manual – Science 
(DLM Consortium, 2017b). 

IX.2.A. EVALUATION OF TEST ADMINISTRATION 
After administering spring operational assessments in 2017, teachers provided feedback via a 
teacher survey. Survey data that inform evaluations of assumptions regarding response 
processes include teacher perceptions of students’ ability to respond as intended, free of 
barriers, and with necessary supports available.10 

One of the fixed-form sections of the spring 2017 teacher survey included three items about 
students’ ability to respond. Teachers were asked to use a 4-point scale (strongly disagree, 
disagree, agree, or strongly agree). Results were combined in the summary presented in Table 38. 
The majority of teachers agreed or strongly agreed that their students responded to items to the 
best of their knowledge and ability; were able to respond regardless of disability, behavior, or 
health concerns; and had access to all supports necessary to participate. The percentage of 
teachers who agreed or strongly agreed to each statement slightly increased from 2015–2016. 

                                                      
10Recruitment and response information for this survey is provided in Chapter IV of this manual. 
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Table 38. Teacher Perceptions of Student Experience With Testlets 

Statement 

Strongly 
disagree Disagree Agree 

Strongly 
agree 

Agree or 
strongly agree 

n % n % n % n % n % 

The student 
responded to items to 
the best of their 
knowledge and 
ability. 

531 3.8 1,029 7.3 7,389 52.3 5,173 36.6 12,562 88.9 

The student was able 
to respond regardless 
of disability, behavior, 
or health concerns. 

1,001 7.1 1,280 9.1 7,611 53.9 4,231 30.0 11,842 83.9 

The student had 
access to all supports 
necessary to 
participate. 

373 2.6 479 3.4 7,399 52.3 5,883 41.6 13,282 93.9 

IX.2.B. TEST-ADMINISTRATION OBSERVATIONS 
Test-administration observations were conducted in multiple states during 2016–2017 to further 
understand student response processes. Students’ typical test-administration process with their 
actual test administrator was observed. Administrations were observed for the full range of 
students eligible for DLM assessments (i.e., students with the most significant cognitive 
disabilities [SCD]). Test-administration observations were collected by DLM project staff, as 
well as state and local education agency staff. 

Consistent with previous years, the DLM Consortium used a test-administration observation 
protocol to gather information about how educators in the consortium states deliver testlets to 
students with SCD. This protocol gave observers, regardless of their role or experience with 
DLM assessments, a standardized way to describe how DLM testlets were administered. The 
test-administration observation protocol captured data about student actions (e.g., navigation, 
responding), educator assistance, variations from standard administration, engagement, and 
barriers to engagement. The observation protocol was used only for descriptive purposes; it was 
not used to evaluate or coach educators or to monitor student performance. Most items on the 
protocol were a direct report of what was observed, such as how the test administrator 
prepared for the assessment and what the test administrator and student said and did. One 
section of the protocol asked observers to make judgments about the student’s engagement 
during the session. 
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During computer-delivered testlets, students are intended to interact independently with a 
computer, using special devices such as alternate keyboards, touch screens, or switches as 
necessary. For teacher-administered testlets, the test administrator was responsible for setting 
up the assessment, delivering the testlet to the student, and recording responses in the KITE® 
system. The test-administration protocol contained different questions specific to each type of 
testlet. 

Test-administration observations were collected in three states during the 2016–2017 academic 
year. Table 39 shows the number of observations collected by state. 

Table 39. Distribution of Teacher Observations by State (N = 32) 

State n % 

Kansas 1 3.1 

Missouri 15 46.9 

West Virginia 16 50.0 

 
Of the 32 test-administration observations collected, 22 (68.8%) were of computer-delivered 
assessments and 10 (31.3%) were of teacher-administered testlets. All 32 observations were for 
science testlets; four observations were made for multiple subjects within a single observation. 

To investigate the assumptions that underlie the claims of the validity argument, several parts 
of the test-administration observation protocol were designed to provide information 
corresponding to the assumptions. One assumption addressed is that educators allow students 
to engage with the system as independently as they are able. For computer-delivered testlets, 
related evidence is summarized in Table 40; behaviors were identified as supporting, neutral, or 
nonsupporting. For example, clarifying directions (77% of observations) removes student 
confusion about the task demands as a source of construct-irrelevant variance and supports the 
student’s meaningful, construct-related engagement with the item. In contrast, using physical 
prompts such as hand-over-hand guidance (0% of observations) clearly indicates that the 
teacher directly influenced the student’s answer choice. 
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Table 40. Test Administrator Actions During Computer-Delivered Testlets (n = 22) 

 Evidence Action n % 

Supporting 

Clarified directions or expectations for the student  17 77.3 

Read one or more screens aloud to the student 13 59.1 

Navigated one or more screens for the student   8 36.4 

Repeated question(s) before student responded    7 31.8 

Neutral 

Asked the student to clarify or confirm one or more 
responses  

  2   9.1 

Allowed student to take a break during the testlet   2   9.1 

Repeated question(s) after student responded (i.e., 
gave a second trial at the same item) 

  0   0.0 

Used verbal prompts to direct the student’s attention 
or engagement (e.g., “look at this”) 

  7 31.8 

Used pointing or gestures to direct student attention or 
engagement 

  7 31.8 

Used materials or manipulatives during the 
administration process 

  6 27.3 

Nonsupporting 

Reduced the number of answer choices available to the 
student 

  0   0.0 

Physically guided the student’s hand to an answer 
choice 

  0   0.0 

Note. Respondents could select multiple responses to this question. 
 

For DLM assessments, interaction with the system includes interaction with the assessment 
content, as well as physical access to the testing device and platform. The fact that educators 
navigated one or more screens in 36% of the observations does not necessarily indicate the 
student was prevented from engaging with the assessment content as independently as 
possible. Depending on the student, test administrator navigation may either support or 
minimize students’ independent, physical interaction with the assessment system. While not the 
same as interfering with students’ interaction with the content of assessment, navigating for 
students who are able to do so independently conflicts with the assumption that students are 
able to interact with the system as intended. The observation protocol did not capture why the 
test administrator chose to navigate, and the reason was not always obvious from watching. 
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A related assumption is that students are able to interact with the system as intended. Evidence 
for this assumption was gathered by observing students taking computer-delivered testlets, as 
shown in Table 41. Independent response selection was observed in 91% of the cases. 
Nonindependent response selection may include allowable practices, such as test 
administrators entering responses for the student. The use of materials outside of KITE Client 
was seen in 14% of the observations. Verbal prompts for navigation and response selection are 
strategies within the realm of allowable flexibility during test administration. These strategies, 
which are commonly used during direct instruction for students with SCD, are used to 
maximize student engagement with the system and promote the type of student-item 
interaction needed for a construct-relevant response. However, they also indicate that students 
were not able to sustain independent interaction with the system throughout the entire testlet. 

Table 41. Student Actions During Computer-Delivered Testlets (n = 22) 

Action n % 

Selected answers independently 20 90.9 

Navigated the screens independently 14 63.6 

Selected answers with verbal prompts   7 31.8 

Navigated the screens with verbal prompts   4 18.2 

Navigated screens after test administrator pointed or gestured   3 13.6 

Used materials outside of KITE Client to indicate responses to testlet items   3 13.6 

Independently revisited a question after answering it   2   9.1 

Skipped one or more items   0   0.0 

Revisited one or more questions after verbal prompt(s)   0   0.0 

Note. Respondents could select multiple responses to this question. 

Another assumption in the validity argument is that students are able to respond to tasks 
irrespective of sensory, mobility, health, communication, or behavioral constraints. This 
assumption was evaluated by having observers note whether there was difficulty with 
accessibility supports (including lack of appropriate, available supports) during observations of 
teacher-administered testlets. Of the 10 observations of teacher-administered testlets, observers 
did not note difficulty in any cases (0.0%). For computer-delivered testlets, evidence to evaluate 
this assumption was collected by noting how students indicated responses to items using 
multiple response modes, such as eye gaze (0.0%) and using manipulatives or materials outside 
of KITE Client (13.6%). Additional evidence for this assumption was gathered by observing 
whether students were able to complete testlets. Of the 32 test-administration observations, 
students completed the testlet in 31 cases (96.9%). 

Another assumption underlying the validity argument is that test administrators enter student 
responses with fidelity. To record student responses with fidelity, test administrators needed to 
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observe multiple modes of communication, such as verbal, gesture, and eye gaze. Table 42 
summarizes students’ response modes for teacher-administered testlets. The most frequently 
observed behavior was the student gestured to indicate a response to test administrator who 
selected answers. 

Table 42. Primary Response Mode for Teacher-Administered Testlets (N = 10) 

Response mode n % 

Gestured to indicate response to test administrator who 
selected answers 

5 50.0 

Verbally indicated response to test administrator who selected 
answers 

4 40.0 

Used computer/device to respond independently 1 10.0 

Eye-gaze system indication to test administrator who selected 
answers 

0   0.0 

Used switch system to respond independently   0   0.0 

No response   4 40.0 

Note. Respondents could select multiple responses to this question. 

Computer-delivered testlets provided another opportunity to confirm fidelity of response entry 
when test administrators entered responses on behalf of students. This support is recorded on 
the Personal Needs & Preferences Profile and is recommended for a variety of situations (e.g., 
students who have limited motor skills and cannot interact directly with the testing device even 
though they can cognitively interact with the onscreen content). Observers recorded whether 
the response entered by the test administrator matched the student’s response. In six of 22 
(27.3%) observations of computer-delivered testlets, the test administrator entered responses on 
the student’s behalf. In five (83.3%) of those cases, observers indicated that the entered response 
matched the student’s response, while one observer could not tell. This evidence supports the 
assumption that test administrators entered student responses with fidelity. 

IX.3. EVIDENCE BASED ON INTERNAL STRUCTURE 
Analyses of an assessment’s internal structure indicate the degree to which “relationships 
among test items and test components conform to the construct on which the proposed test 
score interpretations are based” (AERA et al., 2014, p. 16). Given the heterogeneous nature of 
the DLM student population, statistical analyses can examine whether particular items function 
differently for specific subgroups (e.g., male versus female). Additional evidence based on 
internal structure is provided across the linkage levels that form the basis of reporting. 
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IX.3.A. EVALUATION OF ITEM-LEVEL BIAS 
Differential item functioning (DIF) addresses the broad problem created when some test items 
are “asked in such a way that certain groups of examinees who are knowledgeable about the 
intended concepts are prevented from showing what they know” (Camilli & Shepard, 1994, p. 
1). DIF analyses can uncover internal inconsistency if particular items function differently in a 
systematic way for identifiable subgroups of students (AERA et al., 2014). While identification 
of DIF does not always indicate weakness in a test item, it can point to construct-irrelevant 
variance or unexpected multidimensionality, thereby contributing to an overall argument for 
validity and fairness. 

IX.3.A.i. Method 

DIF analyses for 2017 followed the same procedure used in 2016, including data from 2015–2016 
and 2016–2017 to flag items for evidence of DIF. As additional data are collected in subsequent 
operational years, the scope of DIF analyses will be expanded to include additional items, 
subgroups, and approaches to detecting DIF. 

Items were selected for inclusion in the DIF analyses based on minimum sample-size 
requirements for the two gender subgroups: male and female. Within the DLM population, 
fewer female students responded to items than did male students, by a ratio of approximately 
1:2; therefore, a threshold for item inclusion was retained from the previous 2 years whereby at 
least 100 students in the female group must respond to the item. The threshold of 100 was 
selected to balance the need for a sufficient sample size in the focal group with the relatively 
low number of students responding to many DLM items. 

Consistent with 2016, additional criteria were included to prevent estimation errors. Items with 
an overall p value (or proportion correct) greater than .95 were removed from the analyses. 
Items for which the p value for one gender group was greater than .97 were also removed from 
the analyses. 

Using the above criteria for inclusion, 361 (70%) items on science testlets were selected. In total, 
112 items were evaluated in the elementary school grade band, 122 items were evaluated in the 
middle school grade band, and 127 items were evaluated in the high school grade band. Item 
sample sizes ranged from 294 to 3,504. 

For each item, logistic regression was used to predict the probability of a correct response, given 
group membership and total linkage levels mastered by the student in the content area. The 
logistic regression equation for each item included a matching variable composed of the 
student’s total linkage levels mastered in the content area of the item and a group membership 
variable, with females coded 0 as the focal group and males coded 1 as the reference group. An 
interaction term was included to evaluate whether nonuniform DIF was present for each item 
(Swaminathan & Rogers, 1990); the presence of nonuniform DIF indicates that the item 
functions differently because of the interaction between total linkage levels mastered and 
gender. When nonuniform DIF is present, the gender group with the highest probability of a 
correct response to the item differs along the range of total linkage levels mastered, in which 
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one group is favored at the low end of the spectrum, and the other group is favored at the high 
end. 

Three logistic regression models were fitted for each item: 

M0: logit(πi) = α + βX + γI + δiX 

M1: logit(πi) = α + βX + γI 

M2: logit(πi) = α + βX; 

where πi is the probability of a correct response to the item for group i, X is the matching 
criterion, α is the intercept, β is the slope, γI is the group-specific parameter, and δIX is the 
interaction term. 

Because of the number of items evaluated for DIF, Type I error rates were susceptible to 
inflation. The incorporation of an effect-size measure can be used to distinguish practical 
significance from statistical significance by providing a metric of the magnitude of the effect of 
adding gender and interaction terms to the regression model. 

For each item, the change in the Nagelkerke pseudo R2 measure of effect size was captured, 
from M2 to M1 or M0, to account for the effect of the addition of the group and interaction terms 
to the equation. All effect-size values were reported using both the Zumbo and Thomas (1997) 
and Jodoin and Gierl (2001) indices for reflecting a negligible, moderate, or large effect. The 
Zumbo and Thomas thresholds for classifying DIF effect size are based on Cohen’s (1992) 
guidelines for identifying a small, medium, or large effect. The thresholds for each level are 0.13 
and 0.26; values less than 0.13 have a negligible effect, values between 0.13 and 0.26 have a 
moderate effect, and values of 0.26 or greater have a large effect. 

The Jodoin and Gierl approach expanded on the Zumbo and Thomas effect-size classification by 
basing the effect-size thresholds for the simultaneous item-bias test procedure (Li & Stout, 
1996), which, like logistic regression, also allows for the detection of both uniform and 
nonuniform DIF and uses classification guidelines based on the widely accepted ETS Mantel–
Haenszel classification guidelines. The Jodoin and Gierl threshold values for distinguishing 
negligible, moderate, and large DIF are more stringent than those of the Zumbo and Thomas 
approach, with lower threshold values of .035 and .07 to distinguish between negligible, 
moderate, and large effects. Similar to the ETS Mantel–Haenszel method, negligible effect is 
classified with an A, moderate effect with a B, and large effect with a C for both methods. 

Jodoin and Gierl (2001) also investigated Type I error and power rates in a simulation study 
examining DIF detection using the logistic regression approach. Under two of their conditions, 
the sample-size ratio between the focal and reference groups was 1:2. As with equivalent 
sample-size groups, the authors found that power increased and Type I error rates decreased as 
sample size increased for the unequal sample-size groups. Decreased power to detect DIF items 
was observed when sample-size discrepancies reached a ratio of 1:4. 
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IX.3.A.ii. Results 

IX.3.A.ii.a Uniform Differential Item Functioning Model 

A total of 32 items were flagged for evidence of uniform DIF when comparing M1 to M2. Table 
43 summarizes the total number of items flagged for evidence of uniform DIF by grade band for 
each model. The percentage of items flagged for uniform DIF for each grade band ranged from 
7.1% to 10.7%. 

Table 43. Items Flagged for Evidence of Uniform Differential Item Functioning by Grade Band 

Grade band 
Items 

flagged (n) 
Total 

items (N) 
Items 

flagged (%) 
Items with moderate 
or large effect size (n) 

Elementary 8 112 7.1 0 

Middle 13 122 10.7 0 

High 11 127 8.7 0 

 

Using the Zumbo and Thomas (1997) effect-size classification criteria, all 32 items were found to 
have a negligible effect-size change after the gender term was added to the regression equation. 
Similarly, using the Jodoin and Gierl (2001) effect-size classification criteria, all 32 items were 
found to have a negligible effect-size change after the gender term was added to the regression 
equation. 

IX.3.A.ii.b Combined Model 

A total of 31 items were flagged for evidence of DIF when both the gender and interaction terms 
were included in the regression equation. Table 44 summarizes the number of items flagged by 
content area and grade. The percentage of items flagged for each grade and content area ranged 
from 7.4% to 9.4%. 

Table 44. Items Flagged for Evidence of Differential Item Functioning for the Combined Model 
by Grade Band 

Grade band 
Items 

flagged (n) 
Total items 

(N) 
Items 

flagged (%) 
Items with moderate 
or large effect size (n) 

Elementary 10 112 8.9 0 

Middle   9 122 7.4 0 

High 12 127 9.4 0 

 

Using the Zumbo and Thomas (1997) effect-size classification criteria, all 31 items had a 
negligible change in effect size after adding the gender and interaction terms to the regression 
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equation. Likewise, using the Jodoin and Gierl (2001) effect-size classification criteria, all 31 
items were found to have a negligible change in effect size after adding the gender and 
interaction terms to the regression equation. 

While not found in the 2016–2017 administration, if items are flagged for evidence of DIF with 
either a moderate or large effect size, they are further reviewed by the test-development and 
psychometric teams. Depending on their review, items may be subject to further analysis (e.g., 
cognitive labs, panel reviews). Decisions to revise or remove items or testlets are not made 
based on the results of flagging alone. 

IX.3.B. INTERNAL STRUCTURE ACROSS LINKAGE LEVELS 
Internal structure traditionally indicates the relationships among items measuring the construct 
of interest. However, for DLM assessments, the level of scoring is each linkage level, and all 
items measuring the linkage level are assumed to be fungible. Therefore, DLM assessments 
instead present evidence of internal structure across linkage levels, rather than across items. 
Further, traditional evidence, such as item-total correlations, are not provided because DLM 
assessment results consist of the set of mastered linkage levels, rather than a scaled score or raw 
total score. 

Chapter V of this manual includes a summary of the parameters used to score the assessment, 
which includes the probability of a master providing a correct response to items measuring the 
linkage level and the probability of a non-master providing a correct response to items 
measuring the linkage level. Because a fungible model is used for scoring, these parameters are 
the same for all items measuring the linkage level. 

When linkage levels perform as expected, masters should have a high probability of providing a 
correct response and non-masters should have a low probability of providing a correct 
response. As indicated in Chapter V of this manual, for 102 (100.0%) linkage levels, masters had 
a greater than .5 chance of providing a correct response to items. Similarly, for 81 (79.4%) 
linkage levels, non-masters had a less than .5 chance of providing a correct response to items. 
This finding provides support for how well the linkage levels measured the construct and for 
the overall validity of inferences that can be made from mastery classifications for the linkage 
levels. 

Chapter III of this manual includes additional evidence of internal consistency in the form of 
standardized difference figures. Standardized difference values are calculated for operational 
and field-test items to indicate how far from the linkage-level mean each item’s p value falls. 
Across all linkage levels, 497 (97%) of items fell within two standard deviations of the mean for 
the linkage level. 

These sources of evidence indicate that overall, the linkage levels provide consistent measures 
of what students know and can do. When linkage levels and the items measuring them do not 
perform as expected, test-development teams review flags to ensure the content measures the 
construct as expected. 
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IX.4. EVIDENCE BASED ON CONSEQUENCES OF TESTING 
Validity evidence must include the evaluation of the overall “soundness of these proposed 
interpretations for their intended uses” (AERA et al., 2014, p. 19). To establish sound score 
interpretations, the assessment must measure important content that informs instructional 
choices and goal setting. 

One source of evidence was collected in spring 2017 via teacher-survey responses regarding 
teacher perceptions of assessment content. An additional study was conducted based on a 
score-report tutorial to evaluate teachers’ interpretation of report contents. Additional 
consequential evidence, including teacher focus groups on using score-report contents in the 
subsequent academic year, will be collected in subsequent years. 

IX.4.A. TEACHER PERCEPTION OF ASSESSMENT CONTENTS 
On the spring 2017 survey,11 teachers were asked three questions about their perceptions of the 
assessment contents; Table 45 summarizes their responses. Teachers generally responded that 
content reflected high expectations for their students (82% agreed or strongly agreed), 
measured important academic skills (70% agreed or strongly agreed), and was similar to 
instructional activities used in the classroom (70% agreed or strongly agreed). While the 
majority of teachers agreed with these statements, approximately 20%–30% disagreed. DLM 
assessments represent a departure from the breadth of academic skills assessed by many states’ 
previous alternate assessments. Given the short history of general curriculum access for this 
population and the tendency to prioritize the instruction of functional academic skills 
(Karvonen, Wakeman, Browder, Rogers, & Flowers, 2011), teachers’ responses may reflect 
awareness that DLM assessments contain challenging content. However, teachers were divided 
on its importance in the educational programs of students with SCD. 

                                                      
11Recruitment and sampling are described in Chapter IV of this manual. 
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Table 45. Teacher Perceptions of Assessment Content 

Statement 

Strongly 
disagree Disagree Agree 

Strongly 
agree 

n % n % n % n % 

Content measured important 
academic skills and knowledge 
for this student. 1,607 11.3 2,623 18.5 8,152 57.4 1,813 12.8 

Content reflected high 
expectations for this student.   752   5.3 1,684 11.9 8,570 60.7 3,120 22.1 

Activities in testlets were 
similar to instructional 
activities used in the classroom. 1,287   9.1 3,018 21.4 8,081 57.3 1,715 12.2 

 

IX.4.B. SCORE-REPORT INTERPRETATION TUTORIAL 
To evaluate teacher interpretation and use of DLM score reports, a study was conducted based 
on an online tutorial created to support teacher interpretation of score-report contents 
(Karvonen, Swinburne Romine, Clark, Brussow, & Kingston, 2017). The tutorial included an 
informed consent portion, followed by pre-test items, the training video, evaluation questions, 
and a post-test. The video incorporated concepts from the interpretation guide and addressed 
misconceptions identified in score-report interpretation interviews with teachers. Researchers 
and DLM item writers familiar with DLM score reports wrote the pre- and post-test questions 
in the tutorial. Researchers wrote the evaluation questions, which included four Likert-scale 
items and two open-ended items. 

Participating teachers reported a range of confidence in their ability to interpret and use DLM 
score reports before completing the tutorial; Table 46 summarizes the results. The greatest 
number of teachers reported being somewhat confident, while the fewest reported being not at 
all confident. 
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Table 46. Teacher Confidence in Ability to Interpret and Use Dynamic Learning Maps Score 
Reports Prior to Tutorial (N = 92) 

Level of teacher confidence n % 

Very confident 11 12.0 

Somewhat confident 33 35.9 

Neither confident nor unconfident 25 27.2 

Somewhat unconfident 13 14.1 

Not at all confident 10 10.9 

 

Following the training video, evaluation questions were presented to the participants; 55 
participants responded to these questions. All respondents either strongly agreed (40%) or 
agreed (60%) that the tutorial covered important information. Most respondents strongly 
agreed (25%) or agreed (64%) that explanations provided in the tutorial were clear. Most 
respondents also reported that they felt prepared to explain DLM score-report information to 
parents (87% agreed or strongly agreed) and to use DLM score reports to inform instruction 
(80% agreed or strongly agreed). 

The evaluation included two open-ended items. The first asked teachers whether they had 
remaining questions about interpreting DLM score reports. The second asked teachers to 
indicate additional resources that would help with interpretation and use of DLM score reports. 
Most teachers reported that they did not have remaining questions about the score reports. 
Additional feedback included requests for local training and supplemental materials to support 
instructional planning and decision-making. One participant requested a repository of training 
videos on different aspects of DLM, which is already available; this request indicates a need to 
better inform teachers about the resources available. Several participants also requested 
transcripts and hard copies of the sample reports used in the video, which will be made 
available online. 

Post-test items were included following the evaluation section of the tutorial to prevent 
performance on the quiz from influencing participant evaluation of the tutorial. Forty-two 
participants took the post-test. Of those, 18 participants (42.9%) passed (at least 80% accuracy) 
on their first try. If participants did not respond correctly to 80% of the items, the tutorial was 
presented again for retaking. Twenty-four participants (57.1%) completed the post-test a second 
time, two of whom reached the 80% threshold on their second attempt. Ten participants (23.8%) 
completed the tutorial a third time, but none achieved the passing threshold. 

IX.5. CONCLUSION 
This chapter presents additional studies as evidence to support the overall validity argument 
for the DLM Alternate Assessment System. The studies are organized into categories (content, 
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response process, internal structure, external variables, and consequences of testing) as defined 
by the Standards for Educational and Psychological Testing (AERA et al., 2014), the professional 
standards used to evaluate educational assessments. 

The final chapter of this manual, Chapter XI, references evidence presented through the 
technical manual, including Chapter IX, and expands the discussion of the overall validity 
argument. Chapter XI also provides areas for further inquiry and ongoing evaluation of the 
DLM Alternate Assessment System, building on the evidence presented in the 2015–2016 
Technical Manual – Science (DLM Consortium, 2017b), in support of the assessment’s validity 
argument.
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X. TRAINING AND INSTRUCTIONAL ACTIVITIES 
Chapter X of the 2015–2016 Technical Manual – Science (Dynamic Learning Maps® [DLM®] 
Consortium, 2017b) describes the training offered in 2015–2016 to state and local education 
agency staff, the required test administrator training, the optional science module for test 
administrators, and the optional science instructional activities. No changes were made to 
training or optional science resources in 2016–2017. 
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XI. CONCLUSION AND DISCUSSION 
The Dynamic Learning Maps® (DLM®) Alternate Assessment System is based on the core belief 
that all students should have access to challenging, grade-level academic content. Therefore, the 
DLM assessments provide students with the most significant cognitive disabilities the 
opportunity to demonstrate what they know and can do. 

The DLM science assessment system completed its second operational administration year in 
2016–2017. This technical manual update provides updated evidence from the 2016–2017 year 
intended to support the propositions and assumptions that undergird the assessment system as 
described at the onset of its design in the DLM theory of action. The contents of this manual 
address the information summarized in Table 47 and build on the original evidence included in 
the 2015–2016 Technical Manual – Science (Dynamic Learning Maps [DLM] Consortium, 2017b). 
Together, the two documents summarize the validity evidence collected to date. 

Table 47. Review of Technical Manual Update Contents 

Chapter(s) Contents 

I Provides an overview of information updated for the 2016–2017 year. 

II 
Provides an overview of the purpose of the Essential Elements for science, 
including the intended coverage within the selected organizing structure. 

III, IV 
Provide procedural evidence collected during 2016–2017 of test content 
development and administration, including field-test information and 
teacher-survey results. 

V 
Describes the statistical model used to produce results based on student 
responses, along with evidence of model fit. 

VI Not updated for 2016–2017. 

VII, VIII 

Describe results and analysis of the second operational administration’s data, 
evaluating how students performed on the assessment, the distributions of 
those results, including aggregated and disaggregated results, and analysis of 
the internal consistency of student responses. 

IX 
Provides additional studies from 2016–2017 focused on specific topics related 
to validity and in support of the score propositions and assessment purposes. 

X Not updated for 2016–2017. 
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This chapter reviews the evidence provided in this technical manual update and discusses 
future research studies as part of ongoing and iterative processes of program responsiveness, 
validation, and evaluation. 

XI.1. VALIDITY EVIDENCE SUMMARY 
The accumulated evidence available by the end of the 2016–2017 year provides additional 
support for the validity argument. Each proposition is addressed by evidence in one or more of 
the categories of validity evidence, as summarized in Table 48. While many sources of evidence 
contribute to multiple propositions, Table 48 lists the primary associations. For example, 
Proposition 4 is indirectly supported by content-related evidence described for Propositions 1 
through 3. Table 49 provides the titles and sections for the chapters cited in Table 48.   
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Table 48. Dynamic Learning Maps Science Alternate Assessment System Propositions and 
Sources of Updated Evidence for 2016–2017 

Proposition 

Sources of evidence* 

Test 
content 

Response 
processes 

Internal 
structure 

Relations 
to other 

variables 
Consequences 

of testing 

1. Scores represent 
what students know 
and can do. 

2, 3, 4, 5, 
6, 8, 9, 
10, 12 

6, 13 
3, 4, 7, 
11, 14 

 8, 9, 16 

2. Achievement-
level descriptors 
provide useful 
information about 
student 
achievement. 

8, 9  11  8, 9, 16 

 3. Inferences 
regarding student 
achievement, 
progress, and 
growth can be 
drawn at the 
conceptual-area 
level. 

9, 12  11 12 9, 16 

4. Assessment scores 
provide useful 
information to guide 
instructional 
decisions. 

    16 

*See Table 49 for a list of evidence sources. Only direct sources of evidence are included. Some 
propositions are also supported indirectly by evidence presented for other propositions. 
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Table 49. Evidence Sources Cited in Previous Table 

Evidence no. Chapter Section 

1 III English Language Arts Writing Testlets* 

2 III External Reviews 

3 III Operational Assessment Items for 2015–2016 

4 III Field Testing 

5 IV Administration Incidents  

6 IV User Experience with DLM System 

7 V All 

8 VII Student Performance 

9 VII Score Reports 

10 VII Quality Control Procedures for Data Files and Score Reports 

11 VIII All 

12 IX Evidence Based on Test Content 

13 IX Evidence Based on Response Process 

14 IX Evidence Based on Internal Structure 

15 IX Evidence Based on Relation to Other Variables 

16 IX Evidence Based on Consequences of Testing 
*Reference relevant only to the DLM English language arts assessment and retained here to 
preserve common numbering of evidence across DLM technical manuals. 

XI.2. CONTINUOUS IMPROVEMENT 

XI.2.A. OPERATIONAL ASSESSMENT 
As noted previously in this manual, 2016–2017 was the second year the DLM Science Alternate 
Assessment System was operational. While the 2016–2017 assessments were carried out in a 
manner that supports the validity of inferences made from results for the intended purposes, 
the DLM Science Alternate Assessment Consortium is committed to continual improvement of 
assessments, teacher and student experiences, and technological delivery of the assessment 
system. Through formal research and evaluation as well as informal feedback, some 
improvements have already been implemented for 2017–2018. This section describes significant 
changes from the first to second years of operational administration, as well as examples of 
improvements to be made during the 2017–2018 year. 
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Overall, there were no changes to the Essential Elements and linkage levels, item-writing 
procedures, item flagging outcomes, test administration, or the modeling procedure used to 
calibrate and score assessments from the previous year to 2016–2017. 

Results from the 2016–2017 administration indicated that the majority of students were 
categorized as either Emerging or Approaching the Target, which was consistent with the 
results from the 2015–2016 administration. Results will be examined again following the 2017–
2018 administration. 

Based on an ongoing effort to improve KITE® system functionality, several changes are being 
implemented during 2017–2018. For instance, new science testlets will be available for use 
during the instructionally embedded window (similar to the English language arts and 
mathematics assessments). The spring 2018 administration will also expand availability of 
braille forms to include Unified English Braille (UEB) in addition to English Braille American 
Edition (EBAE), which is currently available. Educator Portal will also be enhanced to support 
creation and delivery of data files and score reports to allow faster delivery timelines. These 
enhancements include automated creation of all aggregated reports provided at the class, 
school, district, and state levels; delivery and 2-week review of General Research Files in the 
interface; on-demand Special Circumstance supplemental files; system-generated exited student 
files; and, in the event of administration incidents, Incident Files indicating actual impact on 
students, not potential impact. 

The validity evidence collected in 2016–2017 expands upon the data compiled in the first 
operational year for each of the critical sources of evidence as described in Standards for 
Educational and Psychological Testing (AERA et al., 2014): evidence based on test content, internal 
structure, response process, relation to other variables, and consequences of testing. Specifically, 
opportunity to learn contributed to the evidence collected based on test content. Teacher-survey 
responses on test administration further contributed to the body of evidence collected based on 
response process, in addition to test administration observations. Evaluation of item-level bias 
via differential item functioning (DIF) analysis, along with item-pool statistics and model 
parameters, provided additional evidence collected based on internal structure. Teacher-survey 
responses provided evidence based on consequences of testing, as well as a score-report 
interpretation tutorial. Planned studies to provide additional validity evidence for 2017–2018 
are summarized in the following section. 

XI.2.B. FUTURE RESEARCH 
The continuous improvement process also leads to future directions for research to inform and 
improve the DLM Alternate Assessment System in 2017–2018 and beyond. This manual 
identifies some areas for further investigation. 

DLM staff members are planning several studies for spring 2018 to collect data from teachers in 
the DLM Science Consortium states. The consortium plans to form a set of score-report 
interpretation focus groups to collect information about how teachers use the 2017 summative 
score reports to inform instruction in the subsequent academic year. DLM staff will conduct 
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interviews with teachers of students with significant cognitive disabilities who are also English 
learners to determine how teachers identify students needing services and how to support those 
students during instruction. Teachers will also be recruited to participate in a study to collect 
additional evidence based on other variables, whereby teacher ratings of student mastery will 
be correlated with model-derived mastery. Finally, teacher-survey data collection will also 
continue during spring 2018 to obtain the second year of data for longitudinal survey items as 
further validity evidence. 

In addition to data collected from students and teachers in the DLM Consortium, research is 
underway to improve the model used to score DLM assessments. This includes the evaluation 
of a Bayesian estimation approach to improve the current linkage-level scoring model. 
Furthermore, research is in progress to potentially support making inferences over tested 
linkage levels, with the ultimate goal of supporting node-based estimation. This research 
agenda is being guided by a modeling subcommittee of DLM Technical Advisory Committee 
(TAC) members. 

Other ongoing operational research is also anticipated to grow as more data become available. 
For example, DIF analyses will be expanded to include evaluating items across subgroups of 
interest, as identified by the First Contact survey. Studies on the comparability of results for 
students who use various combinations of accessibility supports are also dependent upon the 
availability of larger data sets. This line of research is expected to begin in 2018. 

All future studies will be guided by advice from the DLM TAC and the state partners, using 
processes established over the life of the DLM Consortium. 
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