Using Alternate Assessment Results to Measure Student Progress

Meagan Karvonen ASES + ASR SCASS Session June 2016

karvonen@ku.edu

A Few Common Assumptions Behind Growth

- We can measure growth in a unidimensional subject, across grades
- We know how much growth should be expected from one grade to the next
- Scores can be vertically scaled
- Populations are stable
- Performance is normally distributed

AA-AAS Growth: (A Few) Historic Challenges

- Content progressions across grades
- Scoring based on holistic judgment/performance levels or raw score
- Low cuts / high proficiency rates
- Changes in participation -- type of large-scale assessment across years/grades
- Complex population
- Small populations within states

States Using DLM Assessments

DLM System Design

Begins with fine-grained, multidimensional model of the domain

Testlets at Linkage Levels

Connect the map----- developed

Example: Linkage Level Mastery

DYNAMIC

LEARNING MAPS

Learning Profile

		Level Mastery				
Area	Essential Element	1	2	3	(Target)	5
ELA.C1.1	ELA.RI.3.1	Attend to object characteristics	ldentify familiar people, objects, places, or events	ldentify concrete details in an informational text	Understand simple questions about concrete details	Identify words related to explicit information
ELA.C1.1	ELA.RI.3.2	Seek absent objects	Attend to object characteristics	Identify illustrations for a familiar text	Identify a concrete detail in an informational text	Identify explicit details in informational texts
ELA.C1.1	ELA.RI.3.3	ldentify a forward sequence in a familiar routine	Identify actions in familiar routines	ldentify events in a familiar informational text	Determine which event comes first	Identify temporal information or events
ELA.C1.1	ELA.RI.3.5	Seek absent objects	ldentify familiar people, objects, places, or events	ldentify illustrations that go with a text	Use basic text features to find information	Use specific text features to locate information
ELA.C1.1	ELA.RL.3.1	Attend to object characteristics	Identify familiar people, objects, places, or events	Answer who and what questions about details in familiar text	Answer who and what questions about story details	Answer wh- questions about story details

Levels mastered this year

No evidence of mastery on this Essential Element

Essential Element not tested

Page 1 of 3

This report is intended to serve as one source of evidence in an instructional planning process. Because evidence of student mastery of each Essential Element is based on a limited

number of items, the estimated mastery patterns depicted here may not fully represent what a student knows and can do.

© The University of Kansas. All rights reserved. For educational purposes only. May not be used for commercial or other purposes without permission. "Dynamic Learning Maps" is a trademark of The University of Kansas. For more information, including resources, please visit https://dynamiclearningmaps.org/states.

DLM Perspective on "Growth"

- Intended uses of results: include traditional summative purposes but also inform instruction
- Judgments about student progress are in reference to mastery within the fine-grained maps
- What is "typical" or "expected" growth for students with the most significant cognitive disabilities?

Key Considerations for DLM Alternate Assessments

- 1. Heterogeneity among students taking DLM assessments
- 2. Eligibility variation within and across states
- 3. Diagnostic scoring model
- 4. Four performance levels describe achievement relative to standards
- 5. Cut points made for each grade separately
- 6. Distribution assumptions
- 7. No vertical scaling or interval-level scales
- 8. Sample size reductions after splitting by model and grade
- 9. High school assessments typically not required annually 10. Matched records available for subset of population

Key Considerations for DLM Alternate Assessments

- 1. Heterogeneity among students taking DLM assessments
- 2. Eligibility variation within and across states
- 3. Diagnostic scoring model
- 4. Four performance levels describe achievement relative to standards
- 5. Cut points made for each grade separately
- 6. Distribution assumptions
- 7. No vertical scaling or interval-level scales
- 8. Sample size reductions after splitting by model and grade
- 9. High school assessments typically not required annually

10.Matched records available for subset of population

Record Matching

Sample Size

	Integrated		Year-End		
Grade	ELA	Math	ELA	Math	Science
5	1257	1253	7116	7112	96
6	1314	1314	7158	7153	105
7	1275	1273	7312	7297	107
8	1346	1343	7654	7650	111
9	472	470	1570	1567	145
10	423	419	1466	1463	628
11	449	451	1468	1472	606
12	130	129	NA	NA	79

Distributions

Total linkage levels mastered, by subject and grade

Distributions

ELA Performance Level Transitions

		Grade 8				
		Emerging	Approaching	Target	Advanced	
Grade 7	Emerging Approaching At Target	2715	368	73	12	
		685	1186	579	71	
		129	647	1126	303	
	Advanced	10	50	365	372	
Math Performance Level Transitions						
	Grade 8					
				_		

_		Emerging	Approaching	Target	Advanced
Grade 7	Emerging Approaching	4296	1120	193	26
		584	1100	316	62
	At Target	73	263	221	64
	Advanced	23	107	128	102

Mastery Across Years

DLM Perspective on Student Progress

We have work to do before we can support reliable and valid measures of students' academic progress.

- 1. Provide states with guidance on appropriate use of DLM results provided via partner call with accountability staff
- 2. Produce white paper summarizing common approaches and implications for DLM assessments *on website*
- 3. Explore student learning-centered progress options rather than policy-driven or aggregated growth reporting - *in progress*

For More Information

White Paper #1 available at: https://tinyurl.com/dlm-growth-ch1

- Background on growth and DLM
- Common growth measures
- Issues related to reporting growth for DLM assessments presented throughout
 - Limited to most commonly applied metrics and those that DLM partner states indicated they currently use or may intend to use

