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Abstract 

Learning progressions and learning map structures are increasingly being used as the basis for 

the design of large-scale assessments. Of critical importance to these designs is the validity of the 

map structure used to build the assessments. Most commonly, evidence for the validity of a map 

structure comes from procedural evidence gathered during the learning map creation process 

(e.g., research literature, external reviews, etc.). However, it is also important to provide support 

for the validity of the map structure with empirical evidence using data gathered from the 

assessment. In this paper, we propose a framework for the empirical validation of learning maps 

and progressions using diagnostic classification models. Three methods are proposed within this 

framework that provide different levels of model assumptions and types of inferences. The 

framework is then applied to the Dynamic Learning Maps® (DLM®) alternate assessment system 

to illustrate the utility and limitations of each method. Results show that each of the proposed 

methods have some limitations, but are able to provide complementary information for the 

evaluation of the proposed structure of content standards (Essential Elements) in the DLM 

assessment. 

Keywords: learning maps, learning progressions, diagnostic classification models 
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Empirical Methods for Evaluating Maps: Illustrations and Results 

Learning progressions (LPs; also known as learning trajectories [LTs]) are a model of 

pedagogical thinking to describe shifts between understanding new knowledge and more 

advanced targets as a sequence of possible transformations (Simon, 1995). LPs grew out of the 

Science Education for Public Understanding Program (SEPUP; Roberts, Wilson, & Draney, 

1997) with “construct maps”, which are conceived of as “strategically developed cycles and 

sequences of instructional activities that guide learning pathways” (Duschl, Maeng, & Sezen, 

2011, p. 131). Thus, LPs are meant to describe the process of acquiring new knowledge over a 

given period of time, or within a specific learning or content area (National Research Council 

[NRC], 2007). 

LPs in science and mathematics education are currently seen as promising strategies for 

the redesign and reform of curriculum, instruction, and assessment in educational environments 

(Corcoran, Mosher, & Rogat, 2009; Duschl et al., 2011).  LPs mainly rely upon cognitive science 

research on how students learn a particular concept to describe a path of skill acquisition (Alonzo 

& Steedle, 2009). The NRC volume Knowing What Students Know (NRC, 2001) recommends 

the use of cognitive models take a central role in the assessment design process. Consistent with 

this idea, LPs can provide a framework for the development of both large-scale and classroom-

based assessments to measure how understanding develops in a given domain. 

Validating the Structure of LPs 

 Of critical importance when considering the potential uses of LPs in practice is a 

validation of the proposed structure. If the proposed structure is incorrect, then any inferences 

and instructional decisions that are made as a result of the proposed structured are at risk of 

being incorrect as well. Traditionally, evidence supporting the structure of LPs has fallen into 
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two categories. Procedural evidence is focused on the process of how the proposed structure of 

the LP was created. Empirical evidence is focused on statistical methods that can be used to 

validate the LP structure once data has been gathered to measure the proposed knowledge/skills 

and their connections. Both types of evidence are described below, although the main focus of 

the remainder of the paper is empirical evidence. 

 Procedural Evidence Approaches. Procedural evidence refers to the process of creating 

the LP(s) prior to the collection of any data. This involves the initial research and literature 

review that goes in to defining the skills and how they are connected, external review of the LPs 

by individuals not directly involved in the initial creation, and alignment studies. This has been 

the approach taken by many projects. For example, SEPUP (Roberts et al., 1997) created LPs 

with educator input, scoring guides, and examples of student works along the progression. By 

following the increasing complexity of the associated materials, it is possible to also follow the 

logic of the LP organization. Similarly, the Teacher Analysis of Student Knowledge (TASK; 

Supovitz, Ebby, & Sirinides, 2013) developed a progression for teachers’ understanding of their 

students’ mathematics knowledge. This progression was then tied back to the Common Core 

State Standards, providing procedural evidence through the vertical articulation of the standards 

and the development of the LP. The Dynamic Learning Maps® (DLM®) alternate assessment 

project followed similar approaches when developing the learning map models for English 

language arts, mathematics and science (Andersen & Swinburne Romine, 2019; Swinburne 

Romine & Schuster, 2019). 

 Procedural evidence is undoubtedly important to any LP that is developed. Without 

theoretical knowledge to support the proposed structure that makes sense conceptually, empirical 

evidence is unlikely to be sufficient. Indeed, having an entirely data driven LP may result in a 



EMPIRICAL MAP EVALUATION 

  5 
 

structure that is overfit to the collected data or conflicting with the wider research literature. 

However, procedural evidence is also insufficient in isolation. Although LPs can be developed 

using all best practices, there is always some level of uncertainty in the development of the 

structure. Thus, it is important to collect data and provide empirical evidence to corroborate the 

proposed structure.  

 Empirical Evidence Approaches. Empirical evidence involves collecting and analyzing 

data to evaluate the structure of an LP. There are many forms that this type of evidence could 

take. One example is analyzing item responses that align to specific levels within an LP. This 

was the approach taken by Briggs, Alonzo, Schwab, & Wilson (2006), who developed an 

assessment using ordered multiple-choice items to assess students’ level of achievement within a 

learning progression. In this assessment design, answer options are tied to specific levels in the 

progression, and the aggregated response patterns can provide evidence to support the structure 

(i.e., across all levels of assessment, a student’s selected responses should consistently 

correspond to a level in the progression). 

 Another possibility for empirical evidence is to relate the proposed LP to external 

outcomes. In the Length Measuring Learning Trajectory (LMLT), Barrett, et al. (2012) showed 

that the use of their LPs in instruction were able to predict student growth within the targeted 

skills, and that the use of the LMLT in formative instruction was associated with higher 

achievement in those areas during a final assessment. A similar approach was used by Jin, Shin, 

Johnson, Kim, & Anderson (2015) to develop LPs of science content. Using item response 

theory (IRT), Jin et al. (2015) first calibrated separate models for each level of the LP to show 

the distinctness of the progression. They then also showed that as teachers’ understanding of the 

LP increased, so did the performance of their students on the post-test. Thus, as teachers better 
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instruct their students along this progression, students demonstrate better understanding of the 

material. This approach of using external data for evidence was also employed by Supovitz, 

Ebby, Remillar, & Nathenson (2018) on the Teacher Analysis of Student Knowledge (TASK).  

In this project, teachers were asked to blindly rate student responses to items measuring different 

levels of a mathematics LP. Teachers were then asked to place their students on the LP in the 

location that best represented their acquired knowledge. The student responses were then 

compared to the teacher placement in the LP. The findings showed that teachers were able to 

place students on the LP consistent with the students’ item responses. 

 Empirical evidence can also take the form of classical item statistics (i.e., p-values). 

Herrmann-Abell & DeBoer (2018) developed an LP for the complexity of energy in science. 

Items were written at three levels of complexity for each stage of the LP. They then used an 

ANOVA to compare the mean item p-values for each level across the different stages. The 

results indicated that the proposed order of the stages was not supported by the data. However, 

Kendall’s 𝜏𝜏 correlations indicated that second progression, one of conceptual complexity that did 

follow the proposed stages. Thus, the totality of the evidence suggests that the stages of the LP 

are increasing complex, but not in a way that necessitate acquisition of one before another. 

 A similar approach was taken by Clark, Kingston, Templin, & Pardos (2014) in an early 

evaluation of the DLM pilot administration. In this study, students were grouped into four 

complexity bands (Foundational, Band 1, Band 2, and Band 3) based on the students’ expressive 

communication behaviors and subject knowledge, as reported by their teachers. In the pilot 

study, students were administered test items at multiple levels, corresponding to different areas 

of the learning map structure. Within a complexity band, Clark et al. (2014) observed that the 

probability of providing a correct response decreased as the level of the testlet increased, thus 
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providing preliminary evidence of the general ordering of the structure. 

 Taken together, empirical evidence has the ability to not only support (or refute) the 

proposed LP structure, but also provide unexpected findings and avenues for further research. 

However, these methods are all somewhat limited, in that none use a model-based method that is 

consistent with the multidimensional nature of LPs. For example, when using unidimensional 

and multidimensional IRT models, the different stages of the LP can be modeled as separate 

latent abilities, but the structure of the LP cannot be fully enforced (see Deng, Roussos, & 

LaFond, 2017; Schwartz, Ayers, & Wilson, 2017). Additionally, although the methods are useful 

for linear LPs, they may not generalize to a more complicated learning map structure, where 

multiple pathways can lead to the same knowledge acquisition. Thus, a flexible and 

generalizable framework of empirical validation is needed to fully evaluate these structures. 

Map Validation with Diagnostic Classification Models 

The purpose of this paper is to describe and illustrate with examples, empirical 

approaches to learning map (and LP) validation using diagnostic classification models (DCMs). 

Specifically, three methods with varying levels of complexity and model assumptions are 

defined and then illustrated using the DLM alternate assessment. The methods are described in 

the context of the DLM learning maps; however, these methods generalize to other learning map 

or LP models as well. 

Diagnostic Classification Models 

 DCMs (also known as cognitive diagnostic models), are a class of multi-dimensional 

psychometric models that define a mastery profile on a predefined set of attributes (Rupp & 

Templin, 2008; Rupp, Templin, & Henson, 2010). Given an attribute profile for an individual, 

the probability of providing a correct response to an item is determined by the attributes that are 
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required by the item. Whereas traditional psychometric models (e.g., IRT) model a single, 

continuous latent variable, DCMs model student mastery on multiple latent variables or skills of 

interest. Thus, a benefit of using DCMs for calibrating and scoring operational assessments is 

their ability to support instruction by providing fine-grained reporting at the skill level. Based on 

the collected item response data, the model determines the overall probability of students being 

classified into each latent class for each skill. 

 DCMs can also be used to test different learning map or LP structures. Given a number of 

attributes (e.g., nodes in a map, or stages/steps in an LP), there are 2𝐴𝐴 possible attribute profiles, 

where A is the number of attributes. This represents all possible combinations of mastery and 

non-mastery across the attributes. By limiting the number of possible profiles, it is possible to 

test different structures. For example, Templin & Bradshaw (2014) used a hierarchical DCM to 

test an attribute structure of skills related to English grammar, where some attributes had to be 

mastered in order for other attributes to be mastered. This hierarchical model adapts the log-

linear cognitive diagnosis model (LCDM; Henson, Templin, & Willse, 2008), which is discussed 

in more detail. 

 The Log-linear Cognitive Diagnostic Model. The LCDM provides a generalized DCM 

that subsumes many of the other more restrictive DCMs. For example, the deterministic-input 

noisy-and-gate (DINA; de la Torre & Douglas, 2004) and deterministic-input noisy-or-gate 

(DINO; Templin & Henson, 2006), are both subsumed by the LCDM (Henson et al., 2008). In 

the LCDM, the probability, 𝜋𝜋, of an individual in class c providing a correct response to item i 

can be expressed as: 

logit(𝜋𝜋𝑖𝑖𝑖𝑖) = logit(𝑃𝑃(𝑋𝑋𝑖𝑖𝑖𝑖 = 1|𝜶𝜶𝑖𝑖) = 𝜆𝜆𝑖𝑖,0 + �𝜆𝜆𝑖𝑖,1,(𝑎𝑎)𝛼𝛼𝑖𝑖𝑎𝑎𝑞𝑞𝑖𝑖𝑎𝑎

𝐴𝐴

𝑎𝑎=1

+ � � 𝜆𝜆𝑖𝑖,2,(𝑎𝑎,𝑎𝑎′)𝛼𝛼𝑖𝑖𝑎𝑎𝛼𝛼𝑖𝑖𝑎𝑎′𝑞𝑞𝑖𝑖𝑎𝑎𝑞𝑞𝑖𝑖𝑎𝑎′
𝐴𝐴

𝑎𝑎′>1𝑎𝑎=1

+ ⋯ 
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where 𝛼𝛼𝑖𝑖𝑎𝑎 is a binary indicator for whether or not attribute a is mastered for respondents in class 

c, and 𝑞𝑞𝑖𝑖𝑎𝑎 is a binary indicator for whether or not attribute a is measured by item i. For the 

estimated parameters, 𝜆𝜆𝑖𝑖,0 represents the intercept, 𝜆𝜆𝑖𝑖,1,(𝑎𝑎) is the simple main effect for attribute a 

on item i, and 𝜆𝜆𝑖𝑖,2,(𝑎𝑎,𝑎𝑎′) is the two-way interaction between attribute a and a' on item i. Further 

interactions can be added as necessary for items that measure more than two attributes. 

 The specification of a DCM has several advantages. First, the parameters are 

straightforward to interpret, as they are on the same log-odds scale as a standard logistic 

regression. Additionally, the LCDM parameters can be restricted in order to estimate other 

models for model comparison. For example, if all parameters except the intercept and highest-

order interaction for each item are fixed at 0, the model is equivalent to the DINA model. Thus, 

multiple models with different assumptions can be fit using the same framework and directly 

compared. Finally, as mentioned previously, the LCDM can be extended to test attribute 

hierarchies. Thus, this is the framework used for map validation for the DLM alternate 

assessment. 

The Dynamic Learning Maps Alternate Assessment 

The DLM assessments are built based on learning map models, which are a type of 

cognitive model consisting of interconnected learning targets and other critical knowledge and 

skills (DLM Consortium, 2016).  The development of the learning map models started with a 

literature review, including existing learning progressions that typically describe a single, linear 

sequence of building block skills towards an academic grade-level target skill for general 

education students. Using published research, the map was expanded to include alternate and 

additional pathways intended to provide students with significant cognitive disabilities with 

multiple routes to achieving learning targets. That is, rather than conceptualizing knowledge 
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acquisition in a linear path (as in traditional LPs), the DLM learning maps consist of multiple 

pathways that can be followed in order to realize higher skills (DLM Consortium, 2016). 

In the DLM assessment, Essential Elements (EEs) are specific statements of knowledge 

and skills, and are the learning targets for the assessment. For each EE, there is an associated 

mini-map of nodes from the full learning map. These nodes represent critical junctures on the 

path to, at, and beyond the standard identified in the EE. Within these maps, neighborhoods of 

related nodes are grouped together into linkage levels, which is the level of analysis for scoring 

and reporting in the DLM operational assessment. Although multiple nodes may be grouped into 

the same linkage level, a single node will never belong to multiple linkage levels within the same 

EE. For ELA and mathematics, there are five linkage levels within each EE: Initial Precursor, 

Distal Precursor, Proximal Precursor, Target, and Successor. In science, there are only three 

linkage levels within each EE: Initial, Precursor, and Target. These linkage levels are assumed to 

follow a hierarchical structure, whereby higher linkage levels can only be mastered if the lower 

levels have also been mastered. Conversely, if a lower linkage level has not been mastered, it is 

impossible to master higher linkage levels. Finally, items are written to specific nodes in the 

mini-map, and administered together on a testlet with other items that measure the same linkage 

level. Because a linkage level may contain more than one node, multiple nodes may be measured 

on a single testlet. However, a testlet will only measure one linkage level. The relationship of 

nodes, linkage levels, items, and testlets within an EE can be seen in Figure 1 (reproduced from 

DLM Consortium, 2016). 



EMPIRICAL MAP EVALUATION 

  11 
 

 

Figure 1. Relationship between DLM map nodes in five linkage levels and items in testlets. 
Small black boxes represent nodes in the DLM map. Blue and orange boxes represent collections 
of nodes in linkage levels. The orange box denotes the Target linkage level for the EE. 
 
 

In the spring operational assessment, students are administered a series of testlets, with 

each testlet measuring one linkage level from one EE. The level of the first testlet a student tests 

on is determined by the system using information provided by the student’s teacher. After this 

initialization assignment, subsequent levels are assigned based on student performance on the 

previous testlet. For example, in Figure 2, the student started their first testlet at the Distal 

Precursor level. Following the first testlet they adapted up to the Proximal Precursor level in 

testlet two, and adapted up again to the Target level for testlet three. They then adapted back 

down to the Proximal Precursor level in testlet four, where they stayed for the final testlet as 

well. Critically, this adaptation does not happen within EE, but rather across testlets. EEs that are 

tested in one testlet are not repeated in other testlets within the operational assessment. Thus, this 
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student would test on EE #1 at the Distal Precursor level, EE #2 at the Proximal Precursor level, 

etc. The result of this assignment process is that students end up testing on only one linkage level 

within each EE. 

 

Figure 2. Linkage levels adapting up and down between testlets.  
 
 

In summary, the DLM data is collected such that each item measures one linkage level. 

Items are nested within testlets, and all items on a testlet measure the same linkage level. Finally, 

adaptation occurs in the spring assessment between testlets, and therefore between EEs, not 

within EEs. Thus, there is no built-in mechanism on the operational assessment for the collection 

of data on multiple linkage levels within an EE for a single student. Instead, this data is collected 

through other means, such as field tests that intentionally assess students at a different linkage 

level than what was assessed during the operational assessment. 

To date, the structure of the DLM map model has been validated primarily with 

procedural evidence (see Andersen & Swinburne Romine, 2019; Swinburne Romine & Schuster, 

2019). Empirical approaches were initially limited due to data sparseness inherent in the 

operational design (i.e., no vertical data within an EE).  However, recent data collection efforts 

have focused on collecting data for students at multiple linkage levels. Due to this increase in 
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data across linkage levels, empirical studies can be conducted to evaluate the hierarchical 

assumptions of the linkage level ordering.  

Methods 

 Under the DCM framework of map validation, three methods are defined for testing a 

map structure: patterns of mastery profiles, patterns of attribute mastery, and patterns of attribute 

difficulty. All methods were then applied to the DLM assessments for ELA, mathematics, and 

science. To demonstrate the methods, analyses are focused on the assumption of the linear 

hierarchy of linkage levels with EEs. 

Method 1: Patterns of Mastery Profiles 

 Method 1 is the most model based of the three methods. This method involves estimating 

two competing DCMs. The first model contains all possible profiles, and the second model with 

only the profiles hypothesized by the map structure. Take for example linear structure of three 

attributes (such as in the DLM science assessment). With three attributes, there are 23 = 8 

possible mastery profiles. However, under the hierarchical assumption of the linkage levels, not 

all of those profiles are possible. If the hierarchical structure is correct, only the monotonically 

increasing profiles should be possible. This is illustrated in Table 1. 

Table 1 

Possible and Hypothesized Mastery Profiles 

Profile Initial Precursor Target 
1 0 0 0 
2 1 0 0 
3 0 1 0 
4 0 0 1 
5 1 1 0 
6 1 0 1 
7 0 1 1 
8 1 1 1 

Note. Monotonically increasing hypothesized profiles are shaded. 



EMPIRICAL MAP EVALUATION 

  14 
 

 A Bayesian estimation is used to estimate the two LCDM models. The saturated model 

contains all possible mastery profiles. In the reduced model, only the hypothesized profiles are 

allowed. Estimation is performed using the RStan interface (Stan Development Team, 2018) to 

the Stan probabilistic programming language (Carpenter, Gelman, Hoffman, Lee, Goodrich, 

Betancourt, Brubaker, Guo, Li, & Riddell, 2017). If the hierarchical structure holds, then it 

would be expected that the two models have comparable model fit. If the reduced model fits 

significantly worse than the saturated model, then this is evidence that the proposed structure is 

too restrictive. Absolute model fit is assessed through posterior predictive model checks 

(PPMC). Relative fit is assessed through cross validation. 

 Absolute fit. Absolute measures of model fit measure the extent to which the model 

actually fits the data. In the proposed method, absolute fit is assessed using PPMC. PPMC 

involves generating simulated replicated data sets, creating summary statistics for each replicated 

data set, and then comparing the distributions of the summary statistics to the value of each 

statistic in the observed data (for more details and examples see Gelman, Carlin, Stern, Dunson, 

Vehtari, & Rubin, 2014; Levy & Mislevy, 2016; and McElreath, 2016). In a Bayesian estimation 

process, a posterior distribution is generated for each parameter in the model. The size of the 

posterior sample depends on the length of the Markov-Chain Monte Carlo (MCMC) chains. In 

these models, four chains are estimated with 2,000 iterations each, and the first 1,000 are 

discarded for the warm-up period. This results in 4,000 retained draws (1,000 from each chain) 

that make up the posterior samples for each parameter. Thus, 4,000 replicated data sets can be 

created. Each data set is generated using the values of the parameters at a given iteration. This 

means that the uncertainty in the parameter estimates is incorporated into the simulation of the 

replicated data sets. Further, these replicated data sets represent what the data would be expected 
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to look like if the estimated model is correct. Thus, deviations in the observed data from the 

replicated data sets would indicate model misfit. Once the replicated data sets have been 

generated, summary statistics can be calculated. 

 Two main statistics are used for assessing the fit of the model. The first is item p-values. 

For each replicated data set, the p-value for each item is calculated. This results in a distribution 

of the expected p-value for each item. The p-values from the observed data are then compared to 

the data. If the observed p-value for an item falls outside of the middle 95% of the expected 

distribution (or any other interval that is desired; referred to as a credible interval), then the item 

is flagged for model fit. To summarize the model as whole, the number or percentage of flagged 

items can be calculated. 

 In addition to item p-values, an expected distribution of raw scores can be calculated. For 

this summary, the number of students at each raw score point (sum score across items) is 

calculated, resulting in a distribution of the expected number of students at each score point. The 

observed number of students at each score point is then compared to these distributions using a 

95% credible interval. For a global evaluation of model fit, this summary can be taken one step 

further. The mean of the distributions for each score point can be thought of as the expected 

number of students for that score point. These expected counts can be used to calculate a 𝜒𝜒2-like 

goodness-of-fit statistic. This is calculated in the same way as a traditional 𝜒𝜒2 statistic, but will 

not follow the distributional assumptions of the 𝜒𝜒2. However, an empirical distribution can be 

estimated using the replicated data sets. For each replicated data set, the 𝜒𝜒2 is calculated using 

the number of students observed at each score in that replication and the expected counts (the 

means of the distributions). Thus, a 𝜒𝜒2 is estimated for each replication, creating a distribution of 

expected 𝜒𝜒2 statistics. The 𝜒𝜒2 from the observed data is then compared to this distribution, and a 



EMPIRICAL MAP EVALUATION 

  16 
 

posterior predictive p-value (ppp) is calculated as the proportion of the empirical 𝜒𝜒2 distribution 

that is greater than the observed 𝜒𝜒2. If the ppp is less than .05 (or another chosen threshold), then 

the model is rejected (i.e., the observed data is inconsistent with the replicated data sets, and 

therefore the model fit is not sufficient). 

 Absolute model fit is crucial to the evaluation of any model, including DCMs. If the 

model does not fit the data sufficiently, then any inferences made from the model are prone to 

error. However, absolute fit indices are unable to adequately compare competing models. For 

example, if two models both show sufficient absolute fit, these indices are unable to differentiate 

which should be preferred. For this analysis, relative fit indices are needed. 

 Relative fit. Relative model fit indices directly compare two models to determine which 

provides a better overall fit to the data. These are common measures in many models outside of 

DCMs. For example, the Akaike information criterion (AIC; Akaike, 1974) and Bayesian 

information criterion (BIC; Schwarz, 1978) are widely used and recognized. Another relative fit 

comparison is cross validation. In cross validation, a proportion of the data is withheld from the 

estimation process, and fit assessed on the held-out portion. This is then repeated multiple times 

with different training and testing sets. The performance of the model across the held-out 

portions is then compared between models. In the proposed method, an approximation of leave-

one-out cross validation known as Pareto-smoothed importance sampling leave-one-out cross 

validation (PSIS-LOO; Vehtari, Gelman, & Gabry, 2017a; Vehtari, Gelman, & Gabry, 2017b) is 

used. This method estimates the predictive density of the model, balancing predictive power with 

model complexity. This method is also readily available for models estimated with RStan using 

the loo package (Vehtari, Gabry, Yao, & Gelman, 2018). The loo package also provides the 

widely applicable information criterion (WAIC; Watanabe, 2010). The PSIS-LOO and WAIC 
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are asymptotically equivalent; however, the PSIS-LOO is more robust when non-informative 

priors are used, or when there are influential observations. 

 When examining the PSIS-LOO, the magnitude of the difference in the expected log 

predictive density (ELPD; the predictive power) compared to the standard error of the difference. 

If the magnitude of the difference is much larger than the standard error (e.g., 2x as large), then 

one model is preferred over the other, with the sign of the difference indicating the preferred 

model. If the difference is negative, the first model in the comparison is preferred. A positive 

difference indicates the second model in the comparison. Thus, this test is symmetric. If a 

comparison of the saturated to the reduced has a difference in the ELPD of 20, then a comparison 

of reduced to saturated model will have an ELPD difference of -20. 

 Although relative fit indices can provide information about which model may be 

preferred in a comparison, these values are not useful in isolation. An ELPD from the PSIS-LOO 

is dependent on the size of the sample and the likelihood function, and therefore not comparable 

across different types of models or data sets. Additionally, these methods do not tell you if the 

model fits the data. The comparisons are all relative to the other models. For example, the PSIS-

LOO may indicate a preference for the reduced model over the saturated model; it could be that 

both models fit poorly, but the reduced model is less poor. Therefore, it is important that these 

methods be used in conjunction with absolute fit indices in order to ensure a comprehensive 

assessment of model fit.  

Method 2: Patterns of Attribute Mastery 

 Method 2 removes some of the model complexities that exist in Method 1. Rather than 

estimating the LDCM with mastery profiles across all attributes, a separate LCDM is estimated 

for each attribute. This is similar to the approach taken by Jin et al. (2015). Using this method, 
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each attribute is treated as independent of the other attributes. Thus, if there are five attributes or 

nodes in the learning map, five LCDM models would be estimated. Each LCDM then has two 

possible classes: master and non-master of the given skill. With only two classes, this model is 

equivalent to a latent class analysis (see Bartholomew, Knott, & Moustaki, 2011). These models 

are again estimated using RStan (Stan Development Team, 2018). After the estimation of the 

models, the probability of each student being a master of each skill is calculated. Thus, each 

student will have a probability of mastery for each attribute that they tested on, calculated from 

the separate model estimations. 

 Patterns are then examined across the attribute masteries. The patterns of the probabilities 

can be compared directly, or dichotomized into 0/1 mastery decisions using a mastery threshold 

(e.g., .8). If the hierarchical structure holds, then it would be expected the probability of mastery 

would decrease as the learning map progressed to higher levels. Similarly, if using a 

dichotomized score, a student should not receive a “master” classification on an attribute unless 

all the lower levels also received a “master” classification. 

 To assess the map structure overall, the percentage of students that have an unexpected 

pattern of attribute mastery can be calculated. The expectation is that the percentage would be 

low if the hierarchical structure is correct. Further analyses can also examine where the structure 

may be incorrect. For example, if students are commonly getting flagged for an incorrect pattern 

of attribute mastery between the second and third attributes, this may be a specific focus of 

further research and investigation. Flagging can be done at the EE level, or at specific junctions 

of levels. For example, in these analyses, a structure may be flagged if more than 25% of 

students have an unexpected pattern within an EE (flagging for overall EE). Alternatively, a 

structure may be flagged if more than 50% of students had an unexpected pattern across an 
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adjacent pairing of linkage levels (flagging for specific linkage level ordering within EE). For 

this study, the lower 25% threshold for flagging an EE was chosen to be more conservative for 

flagging. As the current study is exploratory, the decision was made to error on the side of over-

reviewing flags, rather than under-reviewing. Because the sample of students who tested on a 

given pair of linkage levels is necessarily smaller than then the full sample of students who tested 

on an EE, more noise may be expected in these comparisons. Thus, a higher threshold was 

chosen for this criterion to avoid unnecessary flagging due to noisy data. 

Method 3: Patterns of Attribute Difficulty 

 Method 3 represents another step down on the scale of model dependency. Whereas 

Method 1 and Method 2 both use some version of the LCDM, Method 3 does not depend on the 

estimation of a model. Similar to Herrmann-Abell & DeBoer (2018), Method 3 involves the 

calculation of item difficulties for each node or attribute, and then comparing the pattern of 

difficulties across attributes within student cohorts. Within each cohort, it is expected that the 

items should get harder as the level increases. 

 For each item within each cohort, the p-value for the item, i, is defined as: 

𝑝𝑝𝑖𝑖 =
1
𝑛𝑛𝑖𝑖
�𝑋𝑋𝑖𝑖

𝑛𝑛𝑖𝑖

𝑖𝑖=1

 

Where 𝑛𝑛𝑖𝑖 is the number of students in the cohort who tested on item i, and 𝑋𝑋𝑖𝑖 is the score on item 

i. The standard error of the item p-value for the cohort is then defined as: 

𝑠𝑠𝑒𝑒𝑖𝑖 = �
𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)

𝑛𝑛𝑖𝑖
 

A weighted average p-value is then calculated for all items with a level for the cohort. The 

weight for each item, 𝑤𝑤𝑖𝑖, is given as: 
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𝑤𝑤𝑖𝑖 =
1
𝑠𝑠𝑒𝑒𝑖𝑖2

 

The weights for all items within a level for the cohort are then scaled to sum to 1.0. The 

weighted average p-value, �̅�𝑝, and weighted standard error, 𝑠𝑠𝑒𝑒�̅�𝑝, are given as: 

�̅�𝑝 = �𝑤𝑤𝑖𝑖𝑝𝑝𝑖𝑖

𝐼𝐼

𝑖𝑖=1

 

𝑠𝑠𝑒𝑒�̅�𝑝 = ��̅�𝑝(1 − �̅�𝑝)�𝑤𝑤𝑖𝑖
2

𝐼𝐼

𝑖𝑖=1

 

Thus, for each cohort and level of the learning map, a weighted average p-value and an 

associated standard error are calculated. These p-values can then be compared within cohorts, 

with the expectation that the weighted p-values should get lower as the level increases (i.e., items 

get harder). Cohorts that don’t follow that pattern across levels (beyond the margin of error) are 

then flagged for a potential violation of the map structure. 

Data 

To demonstrate this DCM framework of map validation in practice, all three methods 

were applied to data from DLM assessments from 2015-2016 to 2017-2018. The full sample was 

filtered to only include testlets that are currently in the operational pool, and only include 

students that tested on multiple linkage levels within an EE. Data was collected at multiple levels 

through a field test design in the spring of 2018 that assigned students content at a linkage level 

adjacent to the level they were assessed in the operational assessment. Additional data 

constraints were applied for each method. 

 For Method 1 and Method 2, students were required to have taken at least three items on 

multiple linkage levels within an EE in order to be included. This was done to support the 
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stability of the estimates of student mastery for the tested linkage levels. Additionally, due to 

data sparseness issues as a result of the test administration process, only the three EEs with the 

most cross-linkage level data from each subject for investigation in Method 1. The sample sizes 

for the nine EEs selected for Method 1 are shown in Table 2. In Table 2, data for ELA.RL.5.1 

includes a total of 11,336 students. Of these, 2,776 tested on both the Initial Precursor and Distal 

Precursor linkage levels, 1,044 tested on only two linkage levels which were non-adjacent, and 

226 students tested on more than two linkage levels. The columns may not sum to the total given 

overlap in the counts (i.e., a student who tested on the Initial Precursor, Distal Precursor, and 

Proximal Precursor linkage levels would be counted in the IP/DP, DP/PP, and > 2 Levels Tested 

columns).  

Table 2 

Summary of Essential Elements Selected for Method 1 

 
IP/DP DP/PP PP/T T/S 

Two 
Non-

Adjacent 

> 2 
Levels 
Tested 

Total N 

ELA.RL.5.1 2,776 3,988 2,974    328 1,044 226 11,336 
ELA.RI.7.5 1,034 1,204    699    972    102 278   4,289 
ELA.RI.11-12.3 2,354 1,640 1,442 1,917 1,470 394   9,217 
M.4.MD.4.b 4,316 3,076 1,206 1,301    973 280 11,152 
M.7.G.1 3,524 3,591 2,338    428 2,698 201 12,780 
M.8.G.9 6,097 2,096 2,126 1,960    345 245 12,869 
SCI.5.PS.3.1 3,614  5,033  3,638   38   8,699 
SCI.MS.ESS.3.3 2,679  6,385  2,859     0   9,244 
SCI.HS.PS.1.2 4,435  5,024  4,505     1   9,530 

Note. IP = Initial Precursor, DP = Distal Precursor, PP = Proximal Precursor, T = Target, S = 
Successor; For science, IP/DP represents the cross over between Initial and Precursor and PP/T 
the crossover between Precursor and Target. 
 
 
 For Method 3, students were grouped into cohorts based on their complexity band, which 

is derived from educator responses to the First Contact survey and determines a student’s starting 
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linkage level in the assessment1. Further, items were required to have a minimum sample size of 

20 students to ensure adequate estimates of item p-values. Starting from the dataset that included 

all EEs and students who tested on adjacent linkage levels, an iterative filtering process was used 

to ensure that after filtering items by a minimum sample size, all students still had data on 

adjacent linkage levels. Specifically, for each EE and complexity band combination, the 

following repetitive filtering process was conducted until the dataset became stable: (1) remove 

items with less than 20 students, then (2) remove students with data from only one linkage level. 

Based on the above selection criteria, data from 138 ELA EEs, 107 mathematics EEs, and 21 

science EEs were used for analysis. Table 3 shows the number of EEs that were available for 

analysis for each subject and complexity band. 

Table 3 
 
Number of Essential Elements Analyzed for Each Subject and Complexity Band 
 

Subject Foundational Band 1 Band 2 Band 3 Total 
English Language Arts 51 118 131 87 138 
Mathematics 27 106 107 54 107 
Science   3   12   11 17   21 

Note. There are 148 total EEs in ELA, 107 EEs in mathematics, and 34 in science. 
 
 

Results 

 To demonstrate the DCM framework for learning map and LP validation in practice, the 

three methods were applied to the DLM assessment data. The results for each method are 

presented separately. 

Method 1: Patterns of Profile Mastery 

 For each of the nine EEs selected (see Table 2), a saturated model with all possible 

                                                           
1 For a complete description of the First Contact survey, see Chapter 4 of the 2014–2015 Technical Manual—
Integrated Model (DLM Consortium, 2016) and the First Contact census report (Nash, Clark, & Karvonen, 2015). 
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mastery profiles and a reduced model with only the monotonically increasing hypothesized 

profiles were estimated. All models failed to estimate properly. In the majority of cases, this was 

due to large amounts of missing data. For example, in ELA and mathematics, students most 

commonly only tested on two of the five linkage levels. Thus, there is around 60% missing data 

for those students, who have no data on the other three linkage levels within the EE. With this 

amount of missing data, the models were unable to converge. Future directions to overcome 

these shortcomings are discussed below. 

Method 2: Patterns of Attribute Mastery 

For each EE in the DLM assessment (148 ELA, 107 mathematics, and 34 science), a 

single attribute LCDM was estimated for each linkage level (five model for ELA and 

mathematics, three for science). Table 4 shows the number and percent of flagged EEs by subject 

and grade level, using both flagging rules. For example, six 3rd grade ELA EEs were flagged by 

at least one of the rules, which is 35% of all possible grade three ELA EEs. In total, 59 of the 289 

EEs across all grades and subjects were flagged (20%); however, the majority of these EEs came 

from ELA (n = 41; 69%). Of the 59 EEs that were flagged, 2 were flagged for over 25% of 

students having an unexpected pattern across tested EEs, 46 were flagged for more than 50% of 

students having an unexpected pattern on a single linkage level combination, and the remaining 

11 EEs met both criteria. As an example, 26% of students who tested on SCI.5.PS.2.1 were 

flagged for an expected pattern, but all linkage level combinations had less than 50% of students 

flagged. For ELA.RI.3.2, only 14% of students were flagged for an unexpected pattern, but 79% 

of students who tested on the Target and Successor levels had an unexpected pattern across those 

two linkage levels. 
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Table 4 
 
Number and Percent of Essential Elements Flagged for Essential Element or Linkage Level 
Combination Rule 
 
 Grade/Course 
 3 4 5 6 7 8 9 10 11 Bio 

ELA 6 
(35%) 

3 
(18%) 

4 
(21%) 

5 
(26%) 

7 
(39%) 

10 
(50%) 

4 
(21%) -- 2 

(11%) -- 

Math 2 
(18%) 

3 
(19%) 

2 
(13%) 

0 
(0%) 

2 
(14%) 

1 
(7%) 

0 
(0%) 

1 
(11%) 

1 
(11%) -- 

Science -- -- 2 
(22%) -- -- 2 

(22%) 
1 

(11%) -- -- 1 
(14%) 

Note. ELA Essential Elements are grade banded for grades 9-10 and 11-12; Science Essential 
Elements are grade banded for grade 3-5, 6-8, and 9-12. 
 
 

A summary of the percentage of EEs within each subject that were flagged for specific 

linkage level combinations can be seen in Figure 3. For example, approximately 60% of all ELA 

Ees were flagged for reversals at the Target/Successor combination. Put another way, in 60% of 

all flagged ELA Ees, more than 50% of students who tested on the Target and Successor linkage 

levels had an unexpected pattern of attribute mastery across those two linkage levels. Figure 3 

shows that most flags were due to reversals among the Proximal Precursor, Target, and 

Successor linkage levels. There were very few Ees flagged due to a reversal between the lowest 

two levels across all three subjects. This pattern of flagging across linkage levels is not 

unexpected given the distance between the content being assessed. In general, the content 

assessed across the Target and Successor levels much closer than the content assessed across the 

Initial Precursor and Distal Precursor. Therefore, it is more likely to observe a reversal across 

those linkage levels whose content is closer together. 
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Figure 3. Percentage Essential Elements flagged for reversals at each linkage level combination 
by subject. 
 
 
Method 3: Patterns of Attribute Difficulty 

Students were grouped into cohorts based on their complexity band, calculated from the 

First Contact survey, as described in Clark et al. (2014). There are four bands: Foundational, 

Band 1, Band 2, and Band 3. For each EE, the weighted p-value and standard error were 

calculated for each cohort. An EE was flagged for a cohort if the weighted p-values did not 
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follow in the expected direction, outside the margin of error, defined as 1 standard error around 

each weighted average. 

Table 5 shows the number and proportion of investigated Ees that were flagged within 

each subject and complexity band combination across all grade levels. Overall, there are very 

few inconsistencies. Only 28 total Ees were flagged in ELA and 35 flagged in mathematics. Of 

the 28 Ees flagged in ELA, 12 (43%) were writing Ees. Three writing Ees were flagged for all 

four complexity bands, while an additional three writing Ees were flagged in two complexity 

bands. The remaining 16 ELA Ees were only flagged in one complexity band. Although writing 

Ees made up a large proportion of flags using when using this method, the same pattern was not 

seen in Method 2, where only 1 of the 41 flagged ELA Ees was a writing EE. 

In mathematics, there was one EE flagged in all four complexity bands, two Ees flagged 

in three complexity bands, and two Ees flagged in two complexity bands. Notably, no science 

Ees were flagged for inconsistencies at any complexity band. ELA shows inconsistencies mainly 

in the Foundational, Band 1, and Band 2 complexity bands, whereas mathematics is mostly 

confined to Band 1, Band 2, and Band 3.  

Table 5 
 
Patterns of Linkage Level Difficulty Flags by Complexity Band and Subject 
 

Subject Foundational Band 1 Band 2 Band 3 
English Language Arts 12 (24%) 13 (11%) 10   (8%) 5   (6%) 
Mathematics   2   (7%) 10   (9%) 26 (24%) 6 (11%) 
Science   0   (0%)   0   (0%)   0   (0%) 0   (0%) 

Note. Sample sizes for each cell are shown in Table 3. 
 
 

Discussion 

In this paper, we present a framework for validating the structure of learning maps and 

LPs using DCMs. Three methods were described with decreasing levels of model dependency. 
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These methods were then applied to the hierarchical linear structure of linkage levels within EEs 

for the DLM alternate assessments for ELA, mathematics, and science to illustrate their use in an 

operational setting. 

In summary, the results from the patterns of attribute mastery (Method 2) and patterns of 

attribute difficulty (Method 3), using the selected thresholds, demonstrated low flagging rates for 

the proposed LL structures. Method 2 also indicated potential areas for further evaluation. 

However, Method 3, though promising and useful, does not offer a model-based assessment of 

the hierarchical structure. Method 2 also showed relatively low rates of flagging; however, this 

method also does not directly model the relationships between attributes. 

Additionally, the results from Method 2 and Method 3 are dependent on the selected 

thresholds. In Method 2, the threshold used for determining mastery was the same threshold used 

in the operational scoring of the DLM assessment (see Chapter 5 of DLM Consortium, 2017), 

but a different threshold may lead to different results. In addition to the mastery threshold, 

flagging thresholds in both Method 2 and Method 3 also will also influence the results. In 

exploratory studies, such as the one described here, lower thresholds may be desired (i.e., higher 

flagging rates) in order to ensure thorough reviews. For example, a key finding from Method 3 

was the high proportion of flags coming from writing EEs. However, these EEs have also been 

affected by opportunity to learn (DLM Consortium, 2018), and thus there is likely more noise in 

the data than would normally be expected in an operational program. Therefore, when 

conducting confirmatory studies used for informing decision making, higher thresholds may be 

used to ensure flags are warranted. 

Finally, Method 1 faced estimation issues due to the large amount of missing data. Thus, 

despite challenges with applying Method 1, Method 2 and Method 3 do provide preliminary 
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evidence for the hierarchical structure of the linkage levels. 

These findings also demonstrate the utility of the proposed framework for map validation 

using DCMs. By including methods with different levels of model dependency, the less model-

dependent methods are still able to provide useful information when the highly model-dependent 

methods fail to estimate. Additionally, evidence of fit or misfit for the proposed structure from 

multiple methods provides a more comprehensive set of information from which final inferences 

can be made. The three methods also provide different levels of detail that may be useful for 

further examination. For example, when using Method 1, mastery profiles that may be important 

but ignored in the reduced model can be identified. Using Method 2, specific combinations of 

attributes that are problematic can be identified. With Method 3, it is possible to evaluate 

whether certain groups of students are more or less likely to conform to the proposed structure. 

Thus, these methods provide a flexible framework for evaluating the structure of learning maps 

and LPs. 

Future work will continue to refine the methodology of the DCM framework for map 

validation and examine the hierarchical structure of the linkage levels from both content-based 

and model-based approaches. New data collection methods are currently underway to collect 

more cross-linkage level data through field testing to reduce the amount of missing data present 

for Method 1. Additionally, modifications to the estimation process in Method 1, such as 

simplifying the parameterization of the structural model (e.g., Thompson, 2018), are being 

explored in order to make the method applicable under less than ideal data conditions.  

Furthermore, simulation studies are currently underway to evaluate alternative flagging 

thresholds for individual linkage level pairings and overall EE patterns for Method 2. By 

simulating data that fits the proposed structure, it is possible to determine what level of flagging 
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would be expected under ideal conditions. Thus, flagging decisions would be based on empirical 

flagging that may provide a more meaningful criterion for review. 

Additionally, Method 3 could be repeated using a different grouping variable. For 

example, rather than using complexity band, students could be grouped based on previous testlet 

performance. This may be a better indicator of student equivalence, and thus may provide results 

that are more actionable from a content perspective. If students were grouped by their most 

recent testlet performance, the test development team would be able to examine specific testlets 

from the across the adjacent linkage levels showing possible reversals. Finally, EEs that are 

flagged across multiple methods will be sent to the test development team to examine the content 

and underlying mini-maps for possible mis-specifications. 

Current and future work is also focused on applying this framework to the finer-grained 

nodes that make up the linkage levels.  Future work in this area includes the DLM assessment 

system and related projects that are also housed with the Center for Accessible Teacher, 

Learning, and Assessment Systems (ATLAS; DLM’s parent center). The Innovations in Science 

Map, Assessment, and Report Technologies (I-SMART; Karvonen, 2018) is focused on building 

node-level science assessments, with the goal of providing feedback to students at the node level. 

Similarly, the Kansas Learning Map project is a collaboration with the Advanced Innovation 

Center for Future Education at Beijing Normal University focused on building node-level 

assessments for proportions and percents in mathematics, and then examining potential structural 

differences across American and Chinese students. Combined with the studies described here 

empirically examining the hierarchical assumptions of linkage levels, this area of research has 

the potential to both inform the literature on student learning processes and provide further 

guidance for the development of learning map and progression-based assessments. 
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