
Running head: EVIDENCE FOR DIAGNOSTIC ASSESSMENTS 

 1 

 

 

 

 

Symposium on 

Diagnostic Assessments: Moving from Theory to Practice 

 

Title: 

Technical Evidence for Diagnostic Assessments 

 

W. Jake Thompson, Amy K. Clark, and Brooke Nash 

ATLAS, University of Kansas 

 

 

 

 

 

 

 

 

Author Note 
 
Paper presented at the 2021 annual meeting of the National Council of Measurement in 
Education, virtual conference. Correspondence concerning this paper should be addressed to W. 
Jake Thompson, ATLAS, University of Kansas, 1122 West Campus Road, Lawrence, KS, 
66045; jakethompson@ku.edu. Do not redistribute this paper without permission of the authors. 



EVIDENCE FOR DIAGNOSTIC ASSESSMENTS 

   2 

Abstract 

Diagnostic classification models (DCMs) have grown in popularity over the past decade. 

However, their adoption in applied settings, especially operational assessment programs, has 

been minimal to slow. One potential barrier to adoption is the technical evidence recommended 

for all assessments in the Standards for Educational and Psychological Testing. Many of the 

methods widely used to provide evidence to meet these recommendations have implicit or 

explicit assumptions of a continuous unidimensional scale, such as those found in classical test 

theory and item response theory. In this paper, we describe how the use of a DCM impacts the 

type of technical evidence that should be provided for an assessment system, as well as methods 

for providing that evidence. An applied example from an operational assessment program that 

uses a DCM for reporting is provided, demonstrating how technical evidence can be provided for 

DCM-based assessments. We provide recommendations for other programs seeking to adopt a 

diagnostic assessment. 

 Keywords: diagnostic classification models, validity, reliability, fairness, DIF 
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Technical Evidence for Diagnostic Assessments 

 All operational assessment programs should provide technical evidence to support the 

claims and intended uses of the assessment. The Standards for Educational and Psychological 

Testing (“Standards” hereafter; American Educational Research Association [AERA] et al., 

2014) describe best practices for documenting technical evidence for a wide range of tests, 

including educational assessment. The Standards identifies three foundations of any assessment 

that should be supported by evidence: validity, reliability, and fairness. Additionally, the 

Standards provide best practices for assessment operations (e.g., test development, standard 

setting, score reporting, etc.) and testing applications (e.g., psychological testing, educational 

assessment, etc.).  

 Although the Standards provide a wide breadth of recommendations for evidence to 

support the use of assessments, they are not comprehensive. For example, most of the 

recommendations for types of evidence that should be documented are based on premise of 

individual results being provided as a continuous scale-score. Continuous scale-scores are the 

person-level result for assessments that have been scaled with classical test theory (CTT; Lord & 

Novick, 1968) or item response theory (IRT; Birnbaum, 1968; Lord, 1953). Though CTT or IRT 

are used for many assessment systems, they are not used for all. Specifically, diagnostic 

classification models (DCMs; Rupp et al., 2010; Bradshaw, 2016) are a relatively recent 

alternative to traditional CTT and IRT approaches for assessment scaling. 

 Rather than estimating student-level results as a continuous scale, DCMs are inherently 

multivariate and assume a categorical underlying latent trait. In practice, this means that DCMs 

are able to provide fine-grained profiles of student achievement for a given set of knowledge, 

skills, and understandings (i.e., attributes). The categorical nature of the latent traits in a DCM-
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based assessment has implications for how technical evidence can be provided. Because, many 

of the standard methods for providing technical evidence assume a continuous latent trait, these 

methods are not necessarily applicable to assessments that use a DCM. Therefore, these methods 

must either be modified or substituted with a more appropriate method that is consistent with the 

construct of interest and measurement model. 

 In this paper we describe how aspects of the foundational technical evidence (i.e., 

validity, reliability, and fairness) may need to be adapted for diagnostic assessments. We provide 

a high-level overview of DCMs and discuss how unique characteristics of these models impact 

the type of evidence that is typically provided for validity, reliability, and fairness. An applied 

example using the Dynamic Learning Maps alternate assessment is then presented to 

demonstrate how the unique DCM considerations manifest in an operational assessment. 

Diagnostic Classification Models 

DCMs are a class of psychometric models that define a mastery profile for each 

individual on a pre-defined set of knowledge, skills, and understandings, referred to as attributes. 

The attributes in a DCM are categorical, and although they can consist of more than two 

categories, most applications of DCMs use dichotomous attributes (Rupp & Templin, 2008). 

Assuming binary attributes, the total number of mastery profiles is given as 𝐶𝐶 = 2𝐴𝐴, where 𝐴𝐴 is 

the total number of attributes in the DCM. Given a mastery profile for an individual, the 

probability of providing a correct response to an item is determined by the attributes that are 

required by the item. The relationships between attributes and items are defined in an 𝐼𝐼 by 𝐴𝐴 

matrix, called a Q-matrix, where 𝐼𝐼 is the number of items (Tatsuoka, 1983). Thus, the probability 

of individual 𝑟𝑟 providing a response to an item is as shown in Equation 1. 
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In Equation 1, 𝜈𝜈𝑐𝑐 represents the base rate of membership in class 𝑐𝑐, and 𝜋𝜋𝑖𝑖𝑐𝑐 is the probability of 

an individual in class 𝑐𝑐 providing a correct response to item 𝑖𝑖. These are the parameters that are 

estimated for the DCM. In most cases, 𝜈𝜈 is left unstructured; that is, the base rate for each class if 

estimated directly without constraint (Rupp et al., 2010). In contrast, there are numerous ways 

that the 𝜋𝜋 parameters can be estimated, depending on whether or not theory suggests attributes 

are able to compensate for each other in instances where an item measures multiple attributes. 

For example, we could define 𝜋𝜋 using the deterministic-input, noisy-and-gate (DINA; Junker & 

Sijtsma, 2001); deterministic-input, noisy-or-gate (DINO; Templin & Henson, 2006); or 

loglinear cognitive diagnostic model (LCDM; Henson et al., 2009; Henson & Templin, 2019), 

just to name a few. Although the choice of DCM is a critical decision that should be driven by 

both cognitive theory and empirical evaluation, a discussion of the model selection process is 

beyond the scope of this paper (for an overview of these methods, see Chen et al., 2013; Sen & 

Bradshaw, 2017). 

Once the model has been estimated, individuals receive results, or scores, in the form of a 

mastery profile. Typically, the results of assessments using DCMs with binary attributes are 

provided as a profile of dichotomous “master” or “non-master” decisions for each attribute; 

however, the raw probability of mastery for each attribute may also be reported (Bradshaw & 

Levy, 2019). Thus, in contrast to CTT and IRT methods where the focus of scoring is a single 

overall general ability score, DCMs are designed to provide fine-grained multivariate scores 

based on the attributes defined in the test design. 
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In summary, DCMs differ from CTT and IRT methods in two keys ways. First, when 

using DCMs, the focus is on placing individuals into categories, rather than locating them along 

a continuum. Second, DCMs are multivariate by design. Rather than a unidimensional scale as is 

common for most applications of CTT and IRT in operational assessment, DCM-based methods 

are intended to report scores for multiple latent traits simultaneously. These characteristics of 

DCMs have significant implications for the technical evidence that must be provided to support 

the use of DCM-based scores in an operational assessment. The following sections describe how 

these characteristics impact validity, reliability, and fairness evidence for DCMs. 

Validity 

 Standard 1.0 of the Standards states that “clear articulation of each intended test score 

interpretation for a specified use should be set forth, and appropriate validity evidence in support 

of each intended interpretation should be provided” (AERA et al., 2014, p. 23). This includes 

providing evidence related to content, response process, internal structure, relation to other 

variables, and consequences (AERA et al., 2014). Across the three foundational areas, validity is 

the most similar between CTT, IRT, and DCMs. 

 Modern validity theory utilizes an argument-based approach to providing evidence to 

support the intended uses of test scores (Kane, 1992, 2002, 2006, 2009). This involves stating 

each claim of the assessment up front, and then providing evidence for each claim, and 

identifying places where there are gaps and additional evidence is needed. An effective way to 

frame this type of argument is through a theory of action (e.g., Bennett et al., 2011; Chalhoub-

Deville, 2016; Perie & Forte, 2011). A theory of action includes all of the claims made by an 

assessment system and describes how the claims are connected to each other through a logical 

chain of reasoning. Regardless of the psychometric model used to score the assessment, some 
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claims would be common (e.g., items are correctly aligned, students are able to interact with 

assessment system, etc.). 

On the other hand, some claims may be specific to the use of a DCM. For example, 

because DCM results produce a fine-grained mastery profile, we might expect for there to be 

claims related to the utility of attribute-level scores for instructional planning or other uses. 

Relatedly, we might expect an assessment using a DCM to include claims related to the mastery 

classifications. Similar to how assessments using CTT and IRT would include claims about the 

accuracy of student scores, DCM-based assessments should include evidence to support the 

claim that reported classifications are accurate. Additionally, if the DCM-based assessment is 

used to make summative statements about overall student achievement, there will likely be a 

claim about student results across all tested attributes representing overall performance. In a way, 

DCM-based assessments are the inverse of CTT- and IRT-based assessments. For CTT- and 

IRT-based assessments, the primary score is the overall score, which in some instances may be 

broken down in subscores, for which additional evidence must be provided (Feinberg & Wainer, 

2014; Sinharay et al., 2011). In contrast, the primary “score” for DCM-based assessments is a 

profile of mastery on more fine-grained attributes (analogous to subscores). Thus, any 

summative judgements would require additional evidence to support the aggregation or cohesion 

of the individual attribute results. 

Overall, the framework for constructing a validity argument for a DCM-based assessment 

is not that different from that used for CTT- or IRT-based assessments. Instead, the differences 

are mainly in the types of claims that might be included and the types of evidence that may be 

required for each claim. 
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Reliability 

Reliability refers to the precision or consistency of test scores. In the Standards, it is 

recommended that “appropriate evidence of reliability/precision should be provided for the 

interpretation for each intended score use” (Standard 2.0; AERA et al., 2014, p. 42). That is, for 

each reported score, there should be a level of precision documented to indicate the amount of 

error that may be present in the estimated score. In addition to the reliability of test scores, the 

Standards recommend that test documentation include the decision consistency for any 

classifications that are made using the scores (Standard 2.16; AERA et al., 2014, p. 46). This 

includes performance levels on academic achievements tests. For example, if an assessment 

reports both an overall score and a performance level, documentation should include an estimate 

of reliability for the overall test score, as well as the decision consistency of the performance 

level classification. 

In assessments scaled using CTT, score reliability is typically reported using a reliability 

index such as the Guttman-Cronbach alpha (Cronbach, 1951; Guttman, 1945), coefficient omega 

(Jöreskog, 1971; McDonald, 1999), or the greatest lower bound (Jackson & Agunwamba, 1977; 

Woodhouse & Jackson, 1977). These measures all attempt to quantify the amount of variance in 

the total score that is due to the underlying “true” score relative to the amount of variance in the 

total score that is due to error. Values close to 1.0 indicate a high level of reliability (i.e., almost 

all the variance in observed scores is due to the true score), and values close to 0.0 indicate poor 

reliability. Once the score reliability has been estimated, the decision consistency of the test can 

be assessed using many methods. The most popular is the Livingston and Lewis (1995) method, 

which uses an effective test length estimate and an assumed beta-binomial model to estimate 

both the decision consistency and accuracy for a CTT-based classification. 
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Because assessments scored with IRT do not assume that all items provide the same 

amount of information, alternative methods have been developed for score reliability and 

decision consistency. In IRT-based assessments, items provide different amounts of information 

for different values of the latent trait. Thus, the precision of the latent trait score is conditional on 

the score itself. This results in what is commonly referred to as the conditional standard error of 

measurement (Nicewander, 2019). Thus, there is not a single reliability index as is common for 

assessments using CTT, but rather many estimates, one for each value of the latent score or scale 

score (Kolen et al., 1996). The conditional observed score distribution can then be used to 

calculate the decision consistency for achievement levels, as described by Lee (2010). Like the 

CTT methods described above, the IRT-based reliability methods also assume a continuous 

unidimensional trait. 

Because results from DCM-based assessments are neither unidimensional nor continuous, 

the reliability indices from CTT and test information functions from IRT are inappropriate. 

However, there are many ways reliability can be assessed for discrete attributes. A review of 

notable reliability methods for DCMs is available from Sinharay & Johnson (2019). In general, 

the choice of reliability method is largely dependent on how results of the assessment are 

reported. If results are reported as probability of mastery, then the reliability should be reported 

at the precision of the estimated probability (e.g., Johnson & Sinharay, 2020; Templin & 

Bradshaw, 2013). 

Alternatively, results reported as classification decisions should report the classification 

consistency. Classification consistency can be reported at the pattern level (e.g., Cui et al., 2012) 

or at the attribute level (e.g., Johnson & Sinharay, 2018; Wang et al., 2015). Alternatively, 

Thompson et al. (2019) proposed a simulation-based approach to estimating classification 
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consistency that allows for reporting at multiple levels of reporting, including an overall 

achievement level, if desired. Thus, although the reliability methods for CTT- and IRT-based 

assessments are not appropriate for DCM-based assessments, there are well established methods 

for evaluating mastery probabilities and/or classifications. 

Fairness 

 The topic of fairness is a broad concept that encompasses all aspects of the test 

development process from test design to score interpretations by end users. This is realized in the 

Standards, which state that “all steps in the testing process, including test design, validation, 

development, administration, and scoring procedures, should be designed in such a manner as to 

minimize construct-irrelevant variance and to promote valid score interpretations for the 

intended use for all examinees in the intended population” (Standard 3.0; AERA et al., 2014, p. 

63). Due to the wide range of topics that fall under the umbrella of fairness, in this paper we 

focus on one aspect that is relevant for psychometrics and is typically evaluated for operational 

assessment programs: differential item function (DIF). 

 DIF refers to the functioning of items across groups of individuals, usually demographic 

such as sex, race, or age group (Camilli, 2006; Holland & Wainer, 1993), after holding 

achievement constant. This presents a critical threat to test fairness, as tests should not be 

affected by construct-irrelevant factors (e.g., Standard 3.2 and Standard 3.6; AERA et al., 2014). 

In practice DIF is assessed by evaluating whether or not group membership is a significant 

predictor of item performance, after accounting for overall ability (the matching variable). There 

are many methods that can be used to determine whether or not group membership is 

“significant.” Two of the most popular are the Mantel-Haenszel method (Mantel & Haenszel, 

1959) and logistic regression (Swaminathan & Rogers, 1990). Both methods attempt to compare, 



EVIDENCE FOR DIAGNOSTIC ASSESSMENTS 

   11 

for each value of the matching variable, how differently two or more groups perform. When 

using CTT or IRT, the matching variable is usually the total sum score or the estimate latent trait, 

𝜃𝜃, respectively. 

 When using a DCM, both the Mantel-Haenszel and logistic regression methods can still 

be used, but special attention should be paid to the matching variable (Qiu et al., 2019). One 

option is to use the full mastery profile as the matching variable. Assuming binary attributes, 

there would be 2𝐴𝐴 possible profiles. This quickly creates a large number of classes, many of 

which likely have small sample sizes, making estimation of the DIF model challenging. 

Alternatively, one could collapse profiles that the DCM specifies should respond the same to an 

item. For example, take an assessment that measures three attributes in total. If an item measures 

only the first attribute, then individuals in profiles [0,0,0], [0,1,0], [0,0,1], and [0,1,1] should 

have the same probability of providing a correct response because attribute one is 0 in all of 

these profiles, and attributes two and three are irrelevant to performance on this item. Collapsing 

profiles can help keep sample sizes from getting too small; however, this requires determining 

the matching variable for each item individually and will be less helpful for items measuring 

multiple attributes. 

Additionally, an aggregation of the individual attributes (e.g., total attributes mastered) 

could be used as the matching variable. If the assessment includes many attributes, then an 

aggregated score begins to look similar to the CTT total score, and the matching variable no 

longer has to be treated as categorical. However, this could contradict model expectations. 

Continuing the previous example, individuals with profiles [0,1,1] and [1,0,1] have both 

mastered two attributes, but because the item measures only the first attribute, the model expects 

individuals within these profiles to respond differently, even though they have all mastered two 
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total attributes. Thus, special consideration must be given to how the matching variable is 

defined for DIF analyses in a DCM-based assessment. 

Technical Evidence in Practice: Dynamic Learning Maps 

 Dynamic Learning Maps (DLM) alternate assessments are administered in over 20 states 

to students with the most significant cognitive disabilities. The DLM assessments evaluate 

student learning and achievement in English language arts (ELA), mathematics, and science. 

Assessments are scored using DCMs, making the DLM system the first large-scale application of 

DCM-based assessments for statewide accountability purposes. In the DLM assessments, the 

alternate content standards, or Essential Elements, are specific statements of knowledge, skills, 

and understandings. To ensure that all students are able to access the academic content, each 

Essential Element is associated with five linkage levels: three precursor levels, one target level 

aligned to the Essential Element, and one level that extends beyond the grade-level expectation.1 

 The linkage level is the unit of scoring for DLM assessments, and thus represent the 

attributes in the DCM. Linkage levels are assessed using testlets, which consist of three to five 

items and are centered around an engagement activity. For each assessed linkage level, students 

receive a “mastered” / “not mastered” decision reported in a fine-grained learning profile (Figure 

1). In addition to the individual mastery decisions, summative achievement is also reported as the 

number of linkage levels mastered within each conceptual area, or content strand, as well as an 

overall performance level for each subject (Figure 2). The use of a DCM for scoring, and 

providing results at multiple levels of reporting, has implications for the evidence needed to 

support the claims of the assessment. In the following sections, we describe how we provide 

technical evidence for DLM assessments in the areas of validity, reliability, and DIF.

 
1 Essential Elements for the DLM science assessment include three linkage levels: Initial, Precursor, and Target. 
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Figure 1 

Learning Profile Showing Fine-Grained Mastery Results for DLM Assessments 
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Figure 2 

Performance Profile Showing Overall Achievement for DLM Assessments 
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Validity Argument for DLM Assessments 

 Validity for the DLM assessments is evaluated in the context of a theory of action, as 

described by Clark & Karvonen (2020). In addition to claims that would be common to most 

large-scale assessment systems, the DLM theory of action includes additional claims specific to 

the population of students taking the DLM assessment, as well as the use of a DCM for the 

scoring model. The DLM theory of action organizes 17 claims into 4 categories: design, 

delivery, scoring, and outcomes. The full theory of action for DLM assessments is shown in 

Figure 3. The use of a DCM has indirect implications for many of the claims in the theory of 

action. For example, the use of a DCM informs the test development process and design, which 

in turn impacts assessment delivery. Thus, even though these types of assessment design and 

delivery claims would likely be present for non-DCM-based assessments, the use of a DCM may 

or may not impact how evidence is provided. In this paper, we will focus on claims that are 

directly impacted by the choice of a DCM. In the DLM theory of action, these are the three 

claims under the scoring category (Figure 3): 

K. Mastery results indicate what students know and can do. 

L. Results indicate summative performance relative to alternate achievement standards. 

M. Results can be used for instructional planning, monitoring, and adjustment. 

The first claim, Claim K, is directly tied to the mastery classifications that are unique to DCMs. 

That is, evidence should be provided that the mastery classifications are accurately representing 

what knowledge, skills, and understandings the student has mastered. 
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Figure 3 

Theory of Action for DLM Assessments 

 

Claim L is not necessarily unique to DCM-based assessments. We would expect many 

assessment systems to include a claim regarding summative performance. However, because the 

summative achievement level is not directly estimated by the DCM, additional evidence is 
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needed to support the aggregation of separate linkage level mastery classifications into an overall 

summative indicator of achievement. 

Finally, Claim M is related to fine-grained nature of DCM-based reporting. Because 

results are reporting each individual linkage level, representing specific knowledge, skills, and 

understandings, we intend for assessment results to be used in ways that may not be possible 

when only a single scale score is reported. Thus, evidence should be provided to demonstrate 

that the classifications are accurate (Claim K), but also that the classifications are reported out in 

a manner that is understandable and actionable for a variety of stakeholders. 

In summary, the DLM theory of action provides the framework to for the validity 

argument in support of the intended uses of the DLM assessments. Although the use of a theory 

of action is not unique to DCM-based assessments, some of the claims and required evidence 

are. Therefore, it is important to fully explore the implications of using of DCM and the evidence 

necessary to evaluate claims impacted by the selection of a DCM-based scoring model when 

developing the validity argument. Although it is beyond the scope of this paper to describe 

specific evidence for each claim, this evidence is available in the DLM technical manual (DLM 

Consortium, 2016) and in the subsequent annual updates to the technical manual (e.g., DLM 

Consortium, 2017, 2020). 

Reliability for DLM Assessments 

 Reliability for DLM assessments is evaluated using a simulated re-test design described 

by Thompson et al. (2019) and in Chapter 8 of DLM Consortium (2017). At a high level, the 

simulation process adheres to the process: 

1. Draw with replacement a student record from the operational data set. 

2. Using calibrated model parameters and estimated mastery of tested linkage levels, 
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simulate item responses from a hypothetical second test administration. 

3. Score the simulated responses using operational scoring rules, including any aggregated 

performance indicators (e.g., conceptual areas or overall performance level). 

4. Repeat steps 1–3 for 2,000,000 simulated students. 

The mastery determinations and aggregations from the simulated re-tests are then compared to 

corresponding results from the observed test to assess the consistency in the scores. For DLM 

assessments, consistency is estimated using Cohen’s 𝜅𝜅 (Cohen, 1960, 1968), tetrachoric and 

polychoric correlations (Bonett & Price, 2005), and percent classification agreement. These 

measures were chosen because in addition to being widely used and thoroughly vetted in the 

research literature, these methods provide complementary information, with the strengths and 

weaknesses of each method balancing each other (Thompson, 2020). 

 The simulation method is useful because it allows for the evaluation of reliability at 

multiple levels of reporting. Most of the DCM reliability methods are focused on individual 

attributes (Sinharay & Johnson, 2019). However, these methods do not allow for the evaluation 

of reliability for assessments reporting aggregated summaries of attributes mastery (e.g., 

achievement levels), and which should describe the reliability of the aggregated scores in 

technical documentation (Standard 2.3, AERA et al., 2014). At the attribute level, the simulation 

methodology compares favorably to non-simulation approaches. Thompson (2020) compared the 

attribute-level classification consistency indices from the simulation method (i.e., tetrachoric 

correlation, Cohen’s 𝜅𝜅, and percent correct classification) to the indices proposed by Wang et al. 

(2015) and Johnson & Sinharay (2018). The comparisons were favorable, with a high-level of 

agreement across the simulation and non-simulation indices. Thus, the reliability simulation 

method used for DLM assessments is able to provide attribute-level classification consistency 
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measures that are themselves consistent with existing indices, as well as provide reliability 

evidence for additional levels of aggregated reporting. 

DIF for DLM Assessments 

 As with many operational tests, DIF for the DLM assessments is evaluated using the 

logistic regression procedure. A complete description of the DIF method is included in Chapter 9 

of the annual technical manual update (DLM Consortium, 2020). In summary, DIF is evaluated 

for both sex and racial groups. In total three models are estimated. The first includes only the 

matching variable as a predictor of item performance. The second model adds the grouping 

variable (i.e., gender or race) to evaluate for uniform DIF. The third model adds an interaction 

term between the matching variable and grouping variable to evaluate for non-uniform DIF. For 

each model comparison the Nagelkerke (1991) pseudo-𝑅𝑅2 is calculated, which is then 

categorized as a negligible, moderate, or large effect using the criteria of Zumbo and Thomas 

(1997) and Jodoin and Gierl (2001). Items identified with a moderate or large effect size are 

reviewed by test development teams. 

 In the DLM DIF models, the matching variable is the total number of linkage levels 

mastered within each subject. Thus, the matching variable used is a semi-continuous measure, 

similar to what would be used in a CTT context. The total number of linkage levels available for 

testing in a given grade and subject ranges from 27 to 100 unique linkage levels, due to 

differences in the scope of blueprints (i.e., how many standards are available). Thus, there are 

enough attributes to create a reasonable range for the matching variable. Hoover et al. (2020) 

compared DIF identification for DLM assessments when different matching variables were used. 

Specifically, the total number of linkage levels mastered was compared to a binary matching 

variable indicating mastery of the linkage level the items measures. Overall, the choice of the 
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matching variable had minimal impact on whether an item was identified as having non-

negligible DIF. However, because students typically only take three to five items for a single 

linkage level, the binary matching variable is more susceptible to bias. For example, if one item 

has DIF, that would represent 20% of the total items taken by a student. Thus, the mastery 

classification could be biased, in turn biasing the DIF analysis. Further, because there are only 

three to five items scale purification is not feasible (Qiu et al., 2019). Thus the aggregated 

matching variable is used for the operational analyses, as this measure is more robust to possible 

contamination, and does not meaningful impact the identification of DIF. 

Discussion 

 DCMs are a powerful tool for understanding student learning. Results from DCM-based 

assessments are more fine-grained than the overall total or scale scores that are provided by 

CTT- and IRT-based assessments. Thus, DCM-based assessments can provide results that are 

more actionable (Clark et al., 2018). Mastery results can be used to inform subsequent 

instructional plans on individual standards or within content strands, and inform instructional 

groups and IEP goals. Additionally, DCMs can be used to better understand the acquisition of 

knowledge by evaluating theorized cognitive models and learning progressions (e.g., Templin & 

Bradshaw, 2014; Thompson & Nash, 2019) and measure student progress (e.g., Madison & 

Bradshaw, 2018; Zhan, 2021). Despite these benefits, adoption of DCMs in operational 

assessments settings has been slow. 

 There are many reasons why the use of DCMs has been limited in operational settings. 

Switching an assessment to a DCM-based scoring model is not as straightforward as swapping 

out different IRT models might be. In all assessment there is an interplay and dependency 

between the scoring model and assessment design. Thus, moving to a new model requires more 
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than changing a scoring algorithm. Rather, the assessment theory of action would likely be 

impacted, and many of aspects of the assessment would need to be updated. Because DCMs are 

not widely used, how to implement these changes, and the necessary evidence to support the 

changes, may not always have clear answers. Additionally, there are policy and political context 

in which stakeholders may not yet be ready to move away from the more traditional CTT- and 

IRT-based approaches. In particular, switching scoring models would have implications for 

student growth and state accountability systems that are already in place. Thus, in addition to 

reflecting on the Standards and best practices in the literature, program staff should engage 

stakeholders early in the process to communicate the benefits of DCMs and achieve buy-in. 

 Among the many considerations when contemplating a switch to a DCM-based 

assessment is the ability to provide high-quality technical evidence. Many of the methods most 

commonly used to provide technical evidence have an implicit or explicit assumption that the 

reported scores are continuous and unidimensional. This is not the case for DCM-based 

assessments. However, a lack of a continuous scale score does not mean that technical evidence 

cannot be provided. Some existing methods can be adopted for use with DCMs, some evidence 

will require newer methods that have not had enough exposure to raise awareness of their 

existence, and yet other evidence requires further exploration and research. For example, most 

methods for evaluating the model fit of DCMs relies on limited information indices that are not 

able to capture the full complexities of the observed data (e.g., Chen et al., 2018). Using 

posterior predictive model checks from Bayesian estimation methods have been proposed to 

more robustly evaluate model fit (e.g., Park et al., 2015; Thompson, 2019); however, more 

research is needed in this area to understand the contexts in which posterior predictive checks are 

the most effective. 
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There is also more work to be done aggregating and summarizing performance across 

many attributes. For the DLM assessments, the total number of attributes mastered is summed, 

and then grouped into performance levels using cut scores (Clark et al., 2017). Alternatively, a 

higher-order latent trait model could be employed (e.g., de la Torre & Douglas, 2004, 2008), 

which estimates a broad latent trait similar to IRT in addition to the fine-grained mastery 

information. Although the higher-order latent trait is an interesting alternative, there has been 

little research to understand the circumstances under which this method would be preferable in 

an operational setting. Additional work would also be needed to evaluate what evidence would 

be needed to support the use of the IRT-like higher-order trait for summative reporting. 

 In this paper, we described how evidence of validity, reliability, and fairness are impacted 

by the choice to score an assessment using a DCM. We used the DLM assessments as an applied 

example where DCM-based evidence has been successful. The methods described in this paper 

have been reported in technical documentation for the assessment. Additionally, technical 

evidence used to support the use of DCMs in the DLM assessment system has been used by 

states to successfully meet the relevant peer review requirements (e.g., U.S. Department of 

Education, 2018), demonstrating the strength and rigor of the evidence for a DCM-based 

assessment. We hope that by describing the ways in which technical evidence can be provided 

for DCM-based assessments, we will encourage other organizations to consider how DCMs may 

benefit their stakeholders, without viewing the evidentiary requirements as prohibitive. 
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