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Abstract 

 To date, no research has addressed the issue of missing data when calculating the M2 statistic. 

Given the ubiquity of missing data, modifying the M2 statistic to account for missing data is needed. This 

simulation study evaluated the Type I error rates and statistical power of a modified M2 statistic (𝑀∗
2). 

Additionally, we examined the parameter recovery of the estimated models to contextualize the 

findings. The Type I error rates and statistical power for the 𝑀∗
2 statistic were elevated in the presence 

of missing data. In contrast, the Type I error rates and statistical power of the models filtering out 

examinees with missing responses and recoding missing responses as incorrect were controlled. 

However, the generating parameters were not recovered as well for the filtered and recoded models as 

they were with the missing data models.  

  



Modifying the M2 Statistic to Handle Missing Data 

 Diagnostic classification models (DCMs) are latent trait models that categorically estimate test 

takers’ proficiency in underlying latent traits (Rupp et al., 2010; Rupp & Templin, 2008). In DCMs, a Q-

matrix links items to the assessed latent traits, where a value of one indicates the latent trait is being 

assessed and a value of zero indicates the latent trait is not being assessed (Tatsuoka, 1983). Items on 

DCM assessments can assess multiple underlying latent traits (Rupp & Templin, 2008), although the 

accuracy of DCM parameter estimations is influenced by the number of items measuring each 

underlying latent trait in isolation (i.e., items that only measure a single attribute; Madison & Bradshaw, 

2015). 

Model Fit  

Model fit is used to provide empirical support for inferences made from the estimated DCM 

(Chen et al., 2013). Poor model fit typically degrades the accuracy of inferences made from the model 

(e.g., Ames & Penfield, 2015), because poor model fit indicates the model does not reflect the observed 

data well. Thus, adequate model fit is often a baseline requirement for supporting inferences made from 

the model. 

Conceptually, model fit is defined as how well the model predicted values match the obtained 

data (Gu, 2011). Model fit has multiple subtypes (e.g., absolute model fit, relative model fit) that can be 

calculated at multiple levels (e.g., test-level, item-level, person-level; Han & Johnson, 2019). Absolute 

model fit assesses whether the parameters estimated by the model generally represent the observed 

data well, while relative model fit allows for the comparison of multiple models to determine which 

model fits the data better (Chen et al., 2013). Test-level model fit examines the consistency between 

model predicted and observed test scores (Gu, 2011; Sinharay & Almond, 2007); item-level model fit 

examines the consistency between model predicted and observed item responses for each item 

(Sinharay & Almond, 2007; Sorrel et al., 2017); and person-level model fit examines the consistency 



between model predicted and observed item response patterns for each test taker (Liu et al., 2009). This 

manuscript will focus on absolute test-level model fit. Test-level model fit is critically important to 

assessments, since inferences made from the model are dependent on the model representing the data 

well. For example, in DCMs, results are often reported as the dichotomous mastery status of each 

assessed skill, and the confidence in the accuracy of the reported skill mastery is contingent upon 

adequate test-level model fit. 

Rupp et al. (2010) described goodness-of-fit statistics, resampling approaches, posterior 

predictive model checking (PPMC), and limited information fit statistics as the existing methods for 

evaluating model fit in DCMs. Goodness-of-fit statistics (e.g., G, χ2) are perhaps the most common 

methods for assessing absolute test-level model fit, although these statistics are often problematic in 

DCMs because of sparsely filled contingency tables. The resampling approaches and PPMC are often 

problematic because they are time and computationally intensive. Rupp et al. (2010) described limited 

information fit statistics as promising methods for evaluating model fit in DCMs.  

Limited Information Fit Statistics 

Building on the work of Bartholomew and Leung (2002), Maydeu-Olivares and Joe (2005) 

introduced a family of limited information fit statistics, Mr, which use marginal proportions up to order r 

for multivariate binomial contingency tables. Maydeu-Olivares and Joe (2006) extended the Mr family of 

limited information fit statistics for application to multivariate multinomial contingency tables. To 

maximize power as well as to minimize computational issues, Maydeu-Olivares and Joe (2005, 2006) 

recommended using M2 for assessing model fit with limited information fit statistics. Subsequent work 

further extended the applicability of the Mr family of limited information fit statistics by showing limited 

information statistics are as or more powerful than full information fit statistics even in situations where 

the contingency table is not sparse (Joe & Maydeu-Olivares, 2010).  Maydeu-Olivares and Joe (2014) 



also developed a method for calculating the Root Mean Square Error of Approximation based on M2 

rather than χ2. 

 The initial work on the M2 statistic by Maydeu-Olivares and Joe has been applied to DCMs in 

many settings (e.g., Chen et al., 2018; Hansen et al., 2014; Jurich, 2014; Liu et al., 2016; Ma, 2019). 

Marginal proportions are easily calculated within DCMs, which facilitates the application of the M2 

statistic to DCMs. Further, software applications have also allowed for estimating the M2 statistic quickly 

(Ma & de la Torre, 2020b), without the computationally intensive efforts required for assessing model fit 

using resampling techniques or PPMC (Rupp et al., 2010). However, applications of the M2 statistic are 

limited by missing data. 

Missing Data  

 Missing data is becoming increasingly examined in DCMs (e.g., Pan & Zhan, 2020; Shan & Wang, 

2020; Sünbül, 2018), which is unsurprising since missing data is a common occurrence (Pan & Zhan, 

2020) and even expected in some operational settings (e.g., Dynamic Learning Maps Consortium, 2020). 

Ultimately, the mechanism for generating the missing data is the impetus for the research examining 

missing data. For data missing completely at random or missing at random (Little & Rubin, 2020; Rubin, 

1976), the parameters in DCMs can be estimated accurately with only the observed data (Rupp et al., 

2010; Shan & Wang, 2020). For data missing not at random (Little & Rubin, 2020; Rubin, 1976), other 

procedures are needed to better estimate the parameters in DCMs (Ma et al., 2020). Regardless of the 

specific mechanism generating the missing data, the methods for estimating DCMs are increasingly 

acknowledging and adjusting for missing data when estimating model parameters and making mastery 

classifications. 

Despite the growing number of applications of the M2 statistic to DCMs, no research has 

addressed the issue of missing data when calculating the M2 statistic. When calculating the M2 statistic, 

the data are required to be full rank, but there is no mention of missing data (Joe & Maydeu-Olivares, 



2010; Maydeu-Olivares & Garcia-Forero, 2010; Maydeu-Olivares & Joe, 2005, 2006, 2008, 2014). In the 

applications of the M2 statistic to DCMs, researchers have focused on applying the M2 statistic to 

correctly specified DCMs and misspecified DCMs, but missing data has not yet been included as a 

manipulated factor in the simulation studies (Chen et al., 2018; Hansen et al., 2014; Jurich, 2014; Liu et 

al., 2016; Ma, 2019). Given that missing data is almost unavoidable in real data analyses (Pan & Zhan, 

2020), we assume methods such as coding missing data as incorrect responses or using listwise deletion 

are needed to avoid issues stemming from the presence of missing data in calculating the M2 statistic, 

although it is possible that imputation methods could be used to address missing data (e.g., Sünbül, 

2018). 

Likely stemming from the relatively limited research on calculating the M2 statistic in the 

presence of missing data, most existing software applications for estimating the M2 statistic in DCMs are 

not capable of handling missing data (e.g., Ma & de la Torre, 2020a). Consequently, approaches such as 

coding missing data as incorrect responses, using listwise to remove examinees with missing data, or 

imputation are often required so that the M2 statistic can be calculated. The marginal proportions may 

be skewed downward when coding missing data as incorrect responses, and valuable data is discarded 

when using listwise deletion. Either of these approaches to handling missing data may introduce bias in 

the M2 statistic. Thus, there is a need to examine whether the M2 statistic for DCMs can be modified to 

better handle missing data. The modified M2 statistic will subsequently be referred to as 𝑀∗
2. 

M2 Limited Information Statistic for Missing Data 

 As presented in Liu et al. (2016), the M2 statistic for DCMs is calculated using 

 𝑀2 = 𝑁 (𝒑2 − 𝝅̂2)
′
𝐶̂2 (𝒑2 − 𝜋̂2), 

( 1) 

where N is the number of examinees, 𝒑2 is the vector of observed marginal probabilities of correctly 

responding to each item or pair of items, 𝝅̂2 is the vector of model predicted marginal probabilities of 



correctly responding to each item or pair of items, and 𝐶̂2 is the orthogonal complement to the Jacobian 

matrix up to the second order.  

 To better account for missing data, the 𝒑2 vector and N from Equation 1 must be modified. 𝒑2 is 

a vector composed of the first and second order marginal probabilities of correctly responding to each 

item and pair of items, respectively. While a single process could increase the efficiency of calculating 

(and modifying) the first and second order marginal probabilities, the process for first and second order 

marginal probabilities is presented separately to provide increased clarity of the modifications. 

For the first order marginal probabilities, the proportion of correct responses is taken for each 

item such that missing responses are removed using casewise deletion. For example, consider the 

following five dichotomously scored responses to an item where ‘NA’ indicates a missing response: 1, 0, 

1, 1, NA. The original method for calculating the M2 statistic was not defined to accept missing 

responses, meaning the original method could not use the previous response pattern. Because of this, 

the original method would require filtering out this examinee, recoding the missing responses as 

incorrect, or recoding the missing responses using a form of imputation. In contrast, the proposed 

method would generate a marginal probability of .75 for this item (i.e., three of the four provided 

responses were correct), without requiring any of those approaches to replace the missing responses.  

For the second order marginal probabilities, a three-step procedure is used to better account for 

missing data. As with the first order marginal probabilities, the original method for calculating the 

second order marginal probabilities for the M2 statistic are not defined to accept missing data, so the 

modified procedure allows for incorporating missing data without using an approach to replace the 

missing responses. In step one of modifying the procedure for calculating the second order marginal 

probabilities, the number of examinees with responses to both items across all pairwise comparisons 

are summed. An example of the matrix resulting from step one using responses to four items from 1,000 

randomly simulated examinees with approximately 3% of responses missing is presented in Table 1. The 



data presented in Table 1 can be read as indicating there were 955 examinees who responded to the 

first item, there were 920 examinees who responded to the first and second item, and so on. 

Additionally, each entry on the main diagonal must be greater than or equal to the other entries in that 

row and column because the number of examinees responding to two items (e.g., Item 1 and Item 2) is a 

subset of the number of examinees responding to either of the items individually (e.g., Item 1 or Item 2). 

Table 1 

The Matrix of Examinees Completing Both of the Items Across All Pairwise Comparisons. 

Item     1     2     3     4 

1 955    
2 920 963   
3 924 931 968  
4 918 922 926 958 

  

In step two, missing data are scored as incorrect responses for calculating the crossproduct. This 

allows for the data to be utilized as if there were no missing data. As will be discussed in step three, 

coding missing data as incorrect allows for the crossproduct to be calculated without being biased by 

the missing data, because the results from step one allow us to adjust for missing data. 

 In step three, the crossproduct of the data with missing data scored as incorrect responses is 

taken, and the matrix resulting from the crossproduct operation is divided by the matrix from step one. 

As mentioned to in step two, coding the missing responses as incorrect responses (i.e., 0) does not 

affect the calculation of the crossproduct because the crossproduct is the number of examinees who 

correctly responded to both items in each pairwise comparison, which will be unaffected by coding 

examinees with missing data as responding incorrectly. Further, dividing by the matrix resulting from 

step one should allow for a more accurate estimation of the second order marginal probabilities than 

simply coding missing responses as incorrect responses or using listwise deletion to remove examinees 

with missing responses. Using the same randomly simulated data to four items from 1,000 randomly 



simulated examinees with approximately 3% of responses missing, the matrix resulting from the 

crossproduct operation is presented in Table 2, and the quotient of the crossproduct matrix (i.e., Table 

2) divided by the matrix from step one (i.e., Table 1) is presented in Table 3. 

Table 2 

The Matrix of Examinees Responding Correctly to Both Items Across All Possible Pairwise Comparisons. 

Item     1      2      3     4 

1 579    
2 385 568   
3 470 404 585  
4 439 379 448 548 

 

 Regarding the second order marginal probabilities (Table 3), a few noteworthy observations 

should be made. First, the matrix presented in Table 3 can be interpreted as the proportion of 

examinees who responded correctly to both items out of the total number of examinees who responded 

to both items. For example, 42% of examinees who responded to both the first and second item 

responded correctly to both. Second, the main diagonal of the matrix in Table 3 is equivalent to the first 

order marginal probabilities. As mentioned previously, separately calculating the first order marginal 

probabilities is unnecessary, but we feel that presenting the calculations of the first and second order 

marginal probabilities separately allows for a greater understanding of what these estimates represent 

and how they were generated. 

Table 3 

The Matrix of the Probability of an Examinee Responding Correctly to Both Items Across All Pairwise 

Comparisons After Accounting for Missing Data. 

Item    1     2     3    4 

1 0.61    
2 0.42 0.59   
3 0.51 0.43 0.60  
4 0.48 0.41 0.48 0.47 

 



 In addition to modifying p2 to better account for missing data in the M2 statistic, N should also 

be modified to reflect that sample size will vary for each of the marginal probabilities to reflect the 

varying number of responses that were provided to each item or pair of items. Thus, N can be modified

to be N, a vector of the sample sizes for the first and second order marginal probabilities. 

 

 The remaining components in the definition of the M2 statistic do not need to be modified to 

better account for missing data. Models that incorporate missing data are already accounting for 

missing data in the model predicted marginal probabilities, meaning that 𝝅̂2 (i.e., the vector of model 

predicted marginal probabilities of correctly responding to each item or pair of items) already accounts

for the missing data. Similarly

 

, 𝐶̂2 relies on model predicted values rather than the observed data, 

meaning missing data is already accounted for when it is incorporated into the model and no further 

modifications are necessary. 

Distribution of the 𝑴𝟐
∗  Statistic  

 Based on the work of Rao (1973), Bishop (1975), and Browne (1984), Maydeu-Olivares and Joe 

(2005) used Slutsky’s theorem to demonstrate that the M2 statistic is asymptotically distributed along a 

Chi-squared distribution with 𝑠 − 𝑞 degrees of freedom, where s is the dimension of 𝝅2 and q is the 

number of estimated item and structural parameters minus one (i.e., the number of free parameters). 

Similarly, for DCMs, Hansen et al. (2016) demonstrated that the M2 statistic is still asymptotically 

distributed along a Chi-squared distribution with 𝑠 − 𝑞 degrees of freedom. By knowing the underlying 

distribution of the M2 statistic, it is possible to conduct inferential statistical tests to evaluate model fit. 

In modifying the M2 statistic, it is imperative to demonstrate that the 𝑀∗
2 statistic is also distributed 

along a Chi-squared distribution with 𝑠 − 𝑞 degrees of freedom so that model fit can be evaluated 

statistically. 

 Because N and p2 are the only components of the M2 statistic that were altered in creating the 

𝑀2  statistic, it must be shown that these alterations to N and p2 do not alter the underlying distribution. ∗



Namely, following the work of Hansen et al. (2016), it must be shown that √𝑵(𝒑2 − 𝝅̂2) is still a vector 

that follows a normal distribution with a mean of zero and a covariance matrix of 𝚵2 −  𝚫2∗ℱ−1𝚫′
2∗, 

where N is a vector of sample sizes for the first and second order marginal proportions, 𝒑2 is the vector 

of the observed second order marginal probabilities of correctly responding to each item and pair of 

items, 𝝅̂2 is the vector of the model predicted second order marginal probabilities of correctly 

responding to each item and pair of items, 𝚵2 is the multinomial covariance matrix, 𝚫2∗ is the second 

order Jacobian matrix containing the first order partial derivates of the response pattern probabilities 

with respect to the model parameters, ℱ−1 is the inverse of the Fisher information matrix, and 𝚫′
2∗ is 

the transposed second order Jacobian matrix containing the first order partial derivates of the response 

pattern probabilities with respect to the model parameters. In the work of Maydeu-Olivares and Joe 

(2005) as well as Hansen et al. (2016) where there were no missing data, N was a constant value for all 

marginal proportions, and √𝑁(𝒑2 − 𝝅̂2) was shown to follow a normal distribution with a mean of zero 

and a covariance matrix of 𝚵2 −  𝚫2∗ℱ−1𝚫′
2∗. Maydeu-Olivares and Joe (2005) noted that the M2 

statistic follows a Chi-square distribution as long as 𝒑2 is a √𝑁-consistent estimator of 𝝅̂2, for any value 

of N. When data is missing completely at random or missing at random, 𝒑2 continue to be a √𝑁-

consistent estimator of 𝝅̂2, as DCMs can adequately estimate parameters in the presence of data 

missing completely at random or missing at random (Rupp et al., 2010; Shan & Wang, 2020). Further, 

there is no requirement for N to remain constant across the vector of the marginal proportions; thus, 

utilizing a vector of sample sizes that are specific to marginal proportions still allows √𝑵(𝒑2 − 𝝅̂2) to be 

a vector that follows a normal distribution with a mean of zero and a covariance matrix of 𝚵2 −

 𝚫2∗ℱ−1𝚫′
2∗. 

Maydeu-Olivares and Joe (2005) demonstrated that the M2 statistic has 𝑠 − 𝑞 degrees of 

freedom based on results from Rao (1973) because 𝐶̂2  and 
(𝑐)

Δ2  are of rank 𝑠 − 𝑞. In modifying the M2 

statistic, 𝐶̂2  was not modified; hence, it is still of rank 𝑠 − 𝑞. Similarly, 
(𝑐)

Δ2  is based on 𝝅2, which was 



also not altered in modifying the M2 statistic. Thus, the 𝑀∗
2 statistic also has 𝑠 − 𝑞 degrees of freedom 

based on the proofs presented by Maydeu-Olivares and Joe (2005). 

 Using these proofs building upon the work by Maydeu-Olivares and Joe (2005) as well as Hansen 

et al. (2016), we demonstrate that the 𝑀∗
2 statistic is also distributed along a Chi-squared distribution 

with 𝑠 − 𝑞 degrees of freedom. As such, the 𝑀∗
2 statistic can be used to statistically evaluate model fit 

using inferential statistical tests, as the underlying distribution of the statistic is known. 

Objective 

 The purpose of this study is to evaluate the performance of the 𝑀∗
2 statistic. The performance of 

the 𝑀∗
2 statistic can be evaluated across a variety of simulated conditions (e.g., sample sizes, between-

attribute correlations, proportion of missing data). Further, the performance of the 𝑀∗
2 statistic can be 

evaluated in comparison to alternative approaches to addressing missing data that are commonly used 

(e.g., filtering out examinees with missing data, recoding missing data as incorrect responses).  

Simulation Framework 

 To evaluate the accuracy of the 𝑀∗
2 statistic in the presence of missing data, we conducted a 

simulation study. We examined the effect of three factors on the 𝑀∗
2 statistic. These factors and levels 

were:  

• Sample size: To study the effects of missing data under varying sample sizes for DCMs, we 

examined DCMs with sample sizes of 1,000 and 5,000.  

• Missing data proportions: To study how the extent of missing data influences calculation of the 

𝑀∗
2 statistic, we examined conditions where the proportion of missing data was 0%, 3%, and 5%. 

• Between-attribute correlations: To analyze how the presence of missing data interacts with 

between-attribute correlations when calculating the 𝑀∗
2 statistic, we examined between-

attribute correlations of zero and 0.20.  



This study used a full factorial simulation. In total, this study had 12 conditions with 100 

replications per condition.  

Data Simulation 

Each simulated assessment measured three attributes with 12 items. For the Q-matrix 

(Tatsuoka, 1983), items were specified such that each of the items measured 2 attributes, with each 

attribute measured by a least 4 items. Table 4 presents a hypothetical Q-matrix for this simulation study. 

When generating the true attribute mastery profiles for each of the examinees, we simulated 

examinees such that there was a 0.50 probability of test takers mastering each of the attributes. We also 

set the between-attribute correlation to be either zero or .20, depending on the simulation condition, 

which is representative of uncorrelated attributes and of weakly correlated attributes. The true attribute 

mastery patterns were simulated using a standard normal cumulative distribution function based on the 

prevalence of attribute mastery, the between-attribute correlation, and a random number. This 

approach is consistent with the simulation approach used by Johnson and Sinharay (2018).  

Table 4 

Hypothetical Q-Matrix  

 Attribute 

Item 𝜶𝟏 𝜶𝟐 𝜶𝟑 

1 1 0 1 
2 1 1 0 
3 0 1 1 
4 1 1 0 
5 0 1 1 
6 0 1 1 
7 1 1 0 
8 1 1 0 
9 1 0 1 
10 1 1 0 
11 0 1 1 
12 1 0 1 

 



We simulated item parameters to generate the data using a log-linear cognitive diagnosis model 

(LCDM; Henson et al., 2009). The item parameters for an LCDM include the item intercepts, main 

effects, and interaction effects. The item intercepts were drawn from a uniform distribution ranging 

from .10 to .20 and were then converted to the logit scale. The item intercept translates to the 

probability that a non-master of the two assessed attributes provides a correct response. The item main 

effects were drawn from truncated 𝑁(2, .5), where values were restricted to be positive. Constraining 

the main effects to non-negative numbers ensures that attribute mastery increases the probability of a 

test taker providing a correct response. The item interaction effects were drawn from 𝑁(2, 1 6⁄ ). As 

with the main effects, the interaction effects were drawn from a truncated normal distribution. 

However, the interaction effect for each item was constrained to be at least as large as negative one 

times the smallest main effect for that item. This ensures that masters of both assessed attributes have 

a probability of providing a correct response that is at least as large as the probability of masters of only 

one attribute providing a correct response.  

In LCDMs, the probability of providing a correct response is calculated by summing the 

combination of item effects that reflect the examinee’s attribute mastery profile. When just one of the 

two assessed attributes were mastered, only the main effect for the mastered attribute is added to the 

item intercept to produce the probability of providing a correct response. When both assessed 

attributes were mastered, the main effects and interaction effect are added to the item intercept to 

produce the probability of providing a correct response. Of note, the sum of the item effects is on the 

logit scale and must be converted back to the probability scale to be interpreted as the probability of 

providing a correct response. 

Model Estimation  

To introduce model misfit into the simulation, we estimated an LCDM and a deterministic-input, 

noisy-and-gate (DINA; de la Torre & Douglas, 2004; Haertel, 1989; Junker & Sijtsma, 2001) model to each 



generated dataset. In contrast to the LCDM, DINA models are non-compensatory models, meaning there 

are two probabilities that examinees will respond correctly: one for all examinees who have not 

mastered all the assessed attributes and one for examinees who have mastered all the assessed 

attributes (de la Torre & Douglas, 2004). In terms of the probability of responding correctly, there is no 

differentiation between examinees who have mastered some of the assessed attributes compared to 

examinees who have not mastered any of the assessed attributes. Because the simulated data was 

generated using an LCDM, where the probability of providing a correct response depends on the specific 

combination of attributes that have been mastered, it is expected that for any generated dataset, the 

LCDM should fit the data better than the DINA model. 

To test the performance of the 𝑀∗
2 statistic in assessing model fit in the presence of missing 

data, the LCDMs and DINA models will be estimated with missing data present based on the simulation 

condition. Because missing data is frequently addressed through data formatting approaches (e.g., 

recoding missing data as incorrect responses, filtering out examinees with missing data) rather than 

including the missing data in the estimated model, we also estimated LCDMs and DINA models when 

recoding missing data as incorrect responses and when filtering out examinees with missing data. Of 

note, neither the recoded data models nor the filtered data models include missing data; thus, the 

performance of the 𝑀∗
2 statistic in the missing data models can be compared to alternative approaches 

to addressing missing data (e.g., recoding, filtering). 

Performance Indices 

 We calculated the Type I error rates and statistical power to comprehensively evaluate the 

performance of the 𝑀∗
2 statistic. To provide further context surrounding the performance of the 𝑀∗

2 

statistic, we also calculated the profile- and attribute-level classification accuracy, and the mean

absolute deviation (MAD) of the estimated parameters. 

 

  



Type I Error 

 Type I error rates were calculated as the proportion of LCDMs that are flagged for misfit within 

each condition. The LCDMs were flagged for misfit when the p value for the 𝑀∗
2 statistic was less than 

.05. Because the true generating model in this simulation study was an LCDM, the estimated LCDMs 

should demonstrate adequate model fit; hence, LCDMs flagged for misfit are reflective of Type I errors 

(i.e., identifying misfit when none is present). 

Power 

 Statistical power was calculated as the proportion of DINA models that are flagged for misfit 

within each condition. As with the Type I error rate calculations, the DINA models were flagged for misfit 

when the p value for the 𝑀∗
2 statistic was less than .05. Because the true generating model in this 

simulation study was an LCDM, the estimated DINA models were expected to demonstrate misfit; thus, 

the power of the 𝑀∗
2 statistic for detecting misfit is reflected by the proportion of truly misfitting models 

(i.e., the DINA models) that were correctly flagged as misfitting. 

Parameter Recovery 

 The recovery of person, structural, and item parameters provides context for the performance 

of the

𝑀𝐴𝐷 =  |𝑝𝑡 − 𝑝𝑒|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , (2) 

 𝑀∗
2 statistic. Recovery of the person parameters was measured through classification accuracy. 

Classification accuracy at the profile- and attribute-level were calculated as the proportion of examinees 

where the estimated model classified the examinees’ latent classes and attribute mastery statuses 

consistently with the examinees’ true latent classes and attribute mastery statuses, respectively. 

Polychoric correlations and Cohen’s kappa were also used to examine profile-level classification 

accuracy. To quantify the absolute discrepancies between the true and estimated parameter values on 

the original scale for each parameter, parameter recovery was evaluated using MAD estimates. The 

MAD estimates were calculated using  

 



 

where 𝑝
𝑡
 is the true value for a generic parameter and 𝑝

𝑒
 is the estimated value for the same 

generic parameter.  

Results  

 The performance of our 𝑀∗
2 statistic was primarily informed by Type I error rates and power. To 

provide additional context for our findings, we also examined classification accuracy and parameter 

recovery for the models estimated in this simulation study. 

Type I Error 

 The Type I error rates for the missing data, recoded data, and filtered data LCDMs are presented 

in Table 5. We expected the Type I error rates to be approximately .05 since we used 𝛼 = .05 to flag 

missing models. In the conditions with no missing data, the Type I error rate of the models incorporating 

missing data was relatively well controlled. This was expected given that the 𝑀∗
2 statistic replicates 

current operationalizations of the M2 statistic when there is no missing data, and previous studies have 

demonstrated controlled Type I error rates for the currently operationalization of the M2 statistic (e.g., 

Chen et al., 2018; Liu et al., 2016). When missing data was present, the 𝑀∗
2 statistic demonstrated 

elevated Type I error rates, ranging from .17 to .31. For the recoded data and filtered data LCDMs, the 

Type I error rates were relatively well controlled. 

  



Table 5 

Type I Error Rates 

n Correlation % Missing Missing Data Recoded Data  Filtered Data  

1,000 0 0 .09 -- -- 
1,000 0 3 .17 .03 .06 
1,000 0 5 .30 .07 .02 
1,000 0.2 0 .05 -- -- 
1,000 0.2 3 .18 .04 .03 
1,000 0.2 5 .23 .05 .05 
5,000 0 0 .03 -- -- 
5,000 0 3 .20 .08 .10 
5,000 0 5 .31 .04 .07 
5,000 0.2 0 .05 -- -- 
5,000 0.2 3 .20 .04 .06 
5,000 0.2 5 .22 .09 .08 

 

Power 

 Across all the estimated DINA models, the 𝑀2 ∗ statistic demonstrated elevated statistical power, 

especially for the conditions with a sample size of 5,000. In these large sample size conditions across all 

models, the statistical power was .98 or greater, which suggests great sensitivity to model misfit. For the 

missing data models, the power ranged from .83 to 1.00, which again suggests great sensitivity to model 

misfit. However, only one condition demonstrated statistical power less than .91, which suggests the 𝑀∗
2 

statistic demonstrates near perfect identification of misfitting models when missing data is present. This 

suggests the elevated Type I error rates may be related to an over-flagging tendency when using the 𝑀2 ∗

statistic. 

  



Table 6 

Statistical Power 

n Correlation % Missing Missing Data Recoded Data  Filtered Data  

1,000 0 0    .95 -- -- 
1,000 0 3    .99    .91    .83 
1,000 0 5    .97    .84    .65 
1,000 0.2 0    .82 -- -- 
1,000 0.2 3    .91    .79    .70 
1,000 0.2 5    .91    .74    .57 
5,000 0 0 1.00 -- -- 
5,000 0 3 1.00 1.00 1.00 
5,000 0 5 1.00 1.00 1.00 
5,000 0.2 0 1.00 -- -- 
5,000 0.2 3 1.00 1.00 1.00 
5,000 0.2 5 1.00 1.00   .98 

 

Follow-Up Analyses 

 To better understand the elevated Type I error rates in the LCDMs when missing data is present 

and the broadly elevated statistical power, we explored classification accuracy and parameter recovery 

to contextualize these findings. It is possible that poor classification accuracy and/or poor parameter 

recovery could have led to model misfit. To examine this possibility, we compared model estimated 

profile- and attribute-level classification accuracy as well as the recovery of parameter estimates 

compared to the generating values. 

Classification Accuracy 

 The profile-level classification accuracy for the estimated LCDMs and DINA models are 

presented in Table 7. The missing data and recoded data LCDMs demonstrated adequate profile-level 

classification accuracy. The remaining models, including the filtered data LCDM, demonstrated rather 

poor profile-level classification accuracy.  

 The missing data LCDMs demonstrated similar classification accuracy regardless of whether 

missing data was present, which is noteworthy in indicating that the missing data LCDMs were able to 

maintain adequate classification accuracy even in the presence of missing data. The recoded LCDMs, 



however, generally demonstrated slightly lower classification accuracy, which was as much as .10 lower 

than the classification accuracy of the corresponding missing data LCDMs. Further, increasing amounts 

of missing data tended to result in a greater decrease in classification accuracy for the recoded data 

LCDMs, while this trend was much less pronounced for the missing data LCDMs. Taken together, these 

findings suggest the missing data LCDMs were able to recover simulated examinees’ true latent classes 

better than the recoded data LCDMs and tremendously better than the filtered data LCDMs. 

Table 7 

 Profile-Level Classification Accuracy 

   LCDM DINA 

n Correlation 
% 

Missing 
Missing 

Data 
Recoded 

Data 
Filtered 

Data 
Missing 

Data 
Recoded 

Data 
Filtered 

Data 

1,000 0 0 .64 -- -- .21 -- -- 
1,000 0 3 .70 .62 .13 .21 .21 .13 
1,000 0 5 .66 .56 .13 .21 .20 .13 
1,000 0.2 0 .69 -- -- .22 -- -- 
1,000 0.2 3 .66 .65 .15 .24 .22 .12 
1,000 0.2 5 .66 .58 .15 .21 .22 .12 
5,000 0 0 .73 -- -- .21 -- -- 
5,000 0 3 .72 .61 .12 .21 .21 .13 
5,000 0 5 .71 .63 .13 .21 .20 .13 
5,000 0.2 0 .73 -- -- .23 -- -- 
5,000 0.2 3 .70 .70 .15 .22 .22 .12 
5,000 0.2 5 .73 .66 .15 .24 .23 .12 

 

The polychoric correlations for the true and estimated attribute mastery profiles are presented 

in Table 8. The polychoric correlations for the missing data and recoded data models for both the LCDMs 

and the DINA models indicated consistent classifications. The polychoric correlations for the filtered 

data models for both the LCDMs and the DINA models indicated inconsistent classifications. Across all 

models, the polychoric correlations tended to be larger with correlated attributes, and the recoded data 

models tended to have slightly lower polychoric correlations as the proportion of missing data 

increased. 



Table 8 

Polychoric Correlations for the Attribute Mastery Profiles 

   LCDM DINA 

n Correlation 
% 

Missing 
Missing 

Data 
Recoded 

Data 
Filtered 

Data 
Missing 

Data 
Recoded 

Data 
Filtered 

Data 

1,000 0 0 .871 -- -- .864 -- -- 
1,000 0 3 .889 .850  .010 .858 .857  .008 
1,000 0 5 .874 .824  .005 .861 .857  .006 
1,000 0.2 0 .910 -- -- .901 -- -- 
1,000 0.2 3 .903 .891  .000 .907 .903  .000 
1,000 0.2 5 .902 .878  .002 .896 .893  .006 
5,000 0 0 .895 -- -- .864 -- -- 
5,000 0 3 .890 .840 -.002 .863 .864 -.003 
5,000 0 5 .891 .845  .006 .864 .862  .006 
5,000 0.2 0 .915 -- -- .902 -- -- 
5,000 0.2 3 .908 .898  .001 .902 .898  .002 
5,000 0.2 5 .914 .884 -.001 .899 .892  .001 

 

The Cohen’s kappa estimates of agreement between the true and estimated attribute mastery 

profiles are presented in Table 9. The Cohen’s kappa interpretation guidelines from Landis and Koch 

(1977) indicate the agreement between the true and estimated attribute mastery profiles was moderate 

to good for the missing data and recoded data LCDMs. The agreement between the true and estimated 

attribute mastery profiles was “slight” for the filtered data LCDM and all the DINA models. 

Attribute-level classification accuracy is presented in Table 10. The missing data and recoded 

data LCDMs demonstrated strong attribute-level classification accuracy. The remaining models 

demonstrated moderate attribute-level classification accuracy. The attribute-level classification accuracy 

was notably higher for the missing data and recoded data LCDMs compared to the missing data and 

recoded data DINA models. The filtered data models demonstrated consistently lower attribute-level 

classification accuracy across the LCDM and DINA models 

  



Table 9 

Cohen’s Kappa for the Attribute Mastery Profiles 

   LCDM DINA 

n Correlation 
% 

Missing 
Missing 

Data 
Recoded 

Data 
Filtered 

Data 
Missing 

Data 
Recoded 

Data 
Filtered 

Data 

1,000 0 0 .587 -- -- .101 -- -- 
1,000 0 3 .652 .560 .003 .097 .093  .002 
1,000 0 5 .615 .498 .002 .098 .087  .000 
1,000 0.2 0 .634 -- -- .108 -- -- 
1,000 0.2 3 .598 .589 .003 .130 .112  .000 
1,000 0.2 5 .605 .512 .002 .099 .109 -.001 
5,000 0 0 .690 -- -- .102 -- -- 
5,000 0 3 .677 .554 .000 .094 .098  .001 
5,000 0 5 .673 .581 .002 .095 .091  .002 
5,000 0.2 0 .684 -- -- .120 -- -- 
5,000 0.2 3 .653 .651 .000 .115 .115  .000 
5,000 0.2 5 .681 .599 .001 .129 .119  .000 

 

Table 10 

Attribute-Level Classification Accuracy 

   LCDM DINA 

n Correlation 
% 

Missing 
Missing 

Data 
Recoded 

Data 
Filtered 

Data 
Missing 

Data 
Recoded 

Data 
Filtered 

Data 

1,000 0 0 .857 -- -- .704 -- -- 
1,000 0 3 .871 .841 .502 .697 .692 .501 
1,000 0 5 .862 .822 .502 .699 .690 .502 
1,000 0.2 0 .878 -- -- .698 -- -- 
1,000 0.2 3 .867 .862 .502 .706 .695 .467 
1,000 0.2 5 .867 .837 .501 .691 .688 .465 
5,000 0 0 .885 -- -- .701 -- -- 
5,000 0 3 .881 .842 .500 .697 .695 .501 
5,000 0 5 .878 .847 .502 .698 .692 .501 
5,000 0.2 0 .891 -- -- .701 -- -- 
5,000 0.2 3 .881 .879 .507 .700 .697 .468 
5,000 0.2 5 .890 .863 .504 .703 .692 .467 

 

  



Structural Parameter Recovery 

 The MAD estimates for structural parameter recovery in the LCDMs are presented in Table 11. 

The MAD estimates for the missing data LCDMs were marginally smaller than the MAD estimates for the 

recoded data and filtered data LCDMs. For the missing data LCDMs, the MAD estimates were consistent 

across the different levels of missing data. In contrast, the MAD estimates for the recoded data and 

filtered data LCDMs showed small increases as the proportion of missing data increased, particularly in 

the small sample size conditions. 

Table 11 

Mean Absolute Difference of Structural Parameter Recovery 

   LCDM 

n Correlation % Missing Missing Data Recoded Data Filtered Data 

1,000 0 0 .035 -- -- 
1,000 0 3 .027 .037 .037 
1,000 0 5 .030 .045 .047 
1,000 0.2 0 .034 -- -- 
1,000 0.2 3 .038 .036 .039 
1,000 0.2 5 .037 .048 .045 
5,000 0 0 .016 -- -- 
5,000 0 3 .017 .030 .017 
5,000 0 5 .017 .023 .018 
5,000 0.2 0 .022 -- -- 
5,000 0.2 3 .026 .021 .022 
5,000 0.2 5 .022 .029 .032 

 

Item Parameter Recovery 

 The MAD estimates for item parameter recovery in the small and large sample size conditions 

are presented in Figure 1 and Figure 2, respectively. The MAD estimates were calculated within each 

type of parameter (e.g., intercept, main effect, interaction effect) to provide a finer-grained analysis of 

how well each model recovered the different item parameters.  

 In the small sample size conditions, the intercept effect MAD estimates for all models were 

similar. The main effect and interaction effect MAD estimates for the missing data and filtered data 



LCDMs were similar to one another. The main effect MAD estimates for the recoded data LCDMs were 

similar or slightly larger than the main effect MAD estimates for the missing data and filtered data 

LCDMs. The interaction effect MAD estimates for the recoded data LCDMs were considerably larger than 

the interaction effect MAD estimates for the missing data and filtered data LCDMs.  

In the large sample size conditions, the intercept effect MAD estimates for all models were again 

similar. When the attributes were uncorrelated, the main effect MAD estimates for the recoded data 

and filtered data LCDMs were similar or slightly larger than the main effect MAD estimates for the 

missing data LCDMs. When the attributes were weakly correlated, the main effect MAD estimates for 

the recoded data and filtered data LCDMs were again similar; however, the main effect MAD estimates 

for the recoded data and filtered data LCDMs were slightly smaller than the main effect MAD estimates 

for the missing data LCDMs in the 3% missing data condition and slightly larger than the main effect 

MAD estimates for the missing data LCDMs in the 5% missing data condition. The interaction effect MAD 

estimates for the missing data and filtered data LCDMs were similar and were considerably lower than 

the interaction effect MAD estimates for the recoded data LCDMs. 

 

  



Figure 1 

Item Parameter Recovery Results (N = 1,000) 

  



Figure 2 

Item Parameter Recovery Results (N = 5,000) 

  



Discussion 

 This simulation study examined the performance of our 𝑀∗
2 statistic. Across all the studied 

conditions, our 𝑀∗
2 statistic demonstrated elevated Type I error rates and statistical power. This suggests 

a sensitivity to model misfit, such that too many models were classified as misfitting. 

 To compare the performance of our 𝑀∗
2 statistic to alternative methods for addressing missing 

data, we also estimated LCDMs when missing data was recoded as incorrect responses (i.e., recoded 

data LCDMs) and when examinees with missing data were filtered out of the data set (i.e., filtered data 

LCDMs). For the recoded data and filtered data LCDMs, the M2 statistic indicated relatively controlled 

Type I error rates and acceptable statistical power, although the statistical power appeared to be slightly 

elevated in the large sample size conditions. 

 Purely examining the Type I error rates and statistical power, it appears that our 𝑀∗
2 statistic was 

not successful; however, an underlying question is how well the estimated missing data, recoded data, 

and filtered data LCDMs recovered the person and item parameters of the generating LCDMs. Thus, 

classification accuracy and the MAD of the estimated parameters provide insight into how well the 

estimated models recovered the parameters of the generating models. 

 The estimated missing data and recoded data LCDMs demonstrated adequate attribute mastery 

profile classification accuracy, but the filtered data LCDM demonstrated attribute mastery profile 

classification accuracy that was clearly suboptimal. The poor performance of the filtered data LCDM is 

somewhat unsurprising given that a number of examinees are filtered out of the available data, leaving 

significantly fewer examinees to be included in the estimated model and thus significantly fewer item 

responses to use in estimating the model parameters. In the small sample size conditions, the average 

number of examinees in the filtered data LCDMs ranged from 539 to 694, and the average number of 

examinees in the filtered data LCDMs ranged from 2,700 to 3,466 in the large sample conditions. This 

translates to a 31-46% decrease of the sample sizes in both the 1,000 and 5,000 sample size conditions.  



 The polychoric correlations and Cohen’s kappa estimates corroborate the findings of the 

attribute mastery profile classification accuracy. Both the polychoric correlations and Cohen’s kappa 

estimates indicate strong agreement between the true and estimated latent classes in the missing data 

and recoded data models, while there is only marginal agreement in the filtered data model. 

 Given the strong profile-level classification accuracy in the missing data and recoded data 

models, it is unsurprising that these models also demonstrated strong attribute-level classification 

accuracy. After all, strong attribute-level classification accuracy is a prerequisite of strong profile-level 

classification accuracy. However, the moderate attribute-level classification accuracy in the filtered data 

models is a significant improvement over the marginal profile-level classification accuracy. When 

combined with the similar but slightly elevated MAD estimates for structural parameter recovery in the 

filtered data model, this suggests that the moderate error in the estimated structural parameters of the 

filtered data model led to estimated attribute mastery profiles that were similar to but not equal to the 

true attribute mastery profiles. 

 The estimated missing data and filtered data LCDMs demonstrated similar MAD estimates for 

the item parameters. The recoded data LCDM demonstrated similar MAD estimates for the intercept 

parameters, although there were minor differences for some of the main effect MAD estimates and 

significant differences for all the interaction effect MAD estimates. Theoretically, it is unsurprising that 

the main effect and interaction effect MAD estimates were elevated for the recoded data LCDMs. 

Because missing data are recoded as incorrect responses in the recoded data LCDMs, the practical 

impact on item parameter recovery is only actualized when the recoded response is different than the 

response that would have likely been provided. In other words, the practical impact on item parameter 

recovery occurs when the examinee would have likely responded correctly yet the missing data is 

recoded as incorrect. More specifically, recoding missing responses as incorrect from examinees who 

would have likely responded correctly makes the items appear to be more difficult than they truly are, 



which would inflate the main and interaction effect estimates. Thus, recoding missing data as incorrect 

responses likely explains the elevated MAD estimates for the main and interaction effects in the recoded 

LCDMs.  

 The parameter recovery results are largely consistent with other DCM simulations examining the 

impact of missing data on parameter recovery. Sünbül (2018) found that recoding data is incorrect led to 

decreased classification accuracy and increased error in the item parameter estimates when estimating 

DINA models. Further, Sünbül (2018) found that classification accuracy tended to decrease and item 

parameter error tended to increase with increasing amounts of missing data, which is consistent with 

the findings of this study. Shan and Wang (2020) found profile-level classification accuracy to be 

approximately .70, attribute-level classification accuracy to be above .90, and the item parameters to be 

recovery adequately when data were missing completely at random. Both findings were consistent with 

the findings of this study, although the Shan and Wang (2020) study utilized fewer examinees and more 

items, which increases the difficulty of making a direct comparison of those findings and the findings 

from this study. 

 Taking all these findings together, the results from this study are inconclusive regarding how to 

estimate model fit in the presence of missing data for DCMs. The Type I error rate was clearly 

suboptimal for the missing data LCDMs, but the Type I error rates were relatively well controlled for the 

recoded data and filtered data LCDMs. However, the classification accuracy and MAD estimates for the 

item parameters indicated the filtered data LCDM and the recoded data LCDM, respectively, were also 

suboptimal. Given the totality of these findings, recoding and filtering missing data appeared to allow an 

LCDM to be estimated that fits the resulting recoded or filtered data set, respectively, although these 

models were not adequate representations of the generating model. Conversely, incorporating missing 

data into the LCDM allowed for the best recovery of the person and item parameters; however, the 𝑀∗
2 

statistic did not recognize that model fit. 



 Because of the ubiquity of missing data as well as importance of appropriately addressing 

missing data, future work should continue modifying existing model fit indices to adequately estimate 

model fit in the presence of missing data. Additionally, future work may consider continued examination 

of the appropriateness of using recoding and filtering to address missing data. While the findings of this 

study are far from conclusive, the findings of this study cast doubt as to whether these approaches to 

addressing missing data allow for adequate parameter recovery. 

Conclusion 

 The 𝑀∗
2 statistic developed in this study performed sub-optimally in terms of Type I error rates 

and statistical power. However, the findings of this study indicated that the missing data LCDMs were 

able to adequately recover the person and item parameters, whereas the recoded and filtered data 

models were not able to adequately recover the person and item parameters. More work is needed to 

identify statistics that control Type I error rates in the presence of missing data while still adequately 

recovering the person and item parameters. Additional work may also be needed to explore implications 

of recoding and filtering missing data in terms of parameter recovery. 
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