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Abstract 

Person-level model fit (i.e., person-fit) should be evaluated in addition to evidence of test- and 

item-level model fit because person-fit has implications for our confidence in the student-level 

inferences made from assessment results. In this manuscript, we compared the Type I error and 

power rates of two new machine learning based person-fit metrics to the performance of other 

person-fit metrics. The performance of the person-fit metrics in this study was not adequate, 

which is in contrast to previously published studies. To better understand this discrepancy, we 

observationally examined differences in the simulation designs between the current study and 

previous studies to identify factors that may have contributed to the differences in the findings. 

We observed differences in classification accuracy, test length, the number of attributes 

assessed, base rates of attribute mastery, and the method for selecting items for the imposition 

of person-misfit. 
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Evaluating the Performance of Person-Fit Detection Methods in Diagnostic Classification 

Models 

Adequate model fit is required for making high quality inferences from assessment 

results (Han & Johnson, 2019). The psychometric model links the observed responses to 

estimates of student proficiency. Consequently, model fit is directly related to the model’s 

accuracy in estimating students’ proficiency. Practically, adequate model fit increases our 

confidence in the interpretations of students’ proficiency in the assessed constructs based on 

the assessment results.  

Model fit can be assessed at the test-, item- and person-level (Han & Johnson, 2019). 

Model fit quantifies the consistency between the observed data and the model predicted 

values at each of these levels (Gu, 2011). Test-level model fit quantifies whether the model fits 

the data obtained across all items (Sinharay & Almond, 2007). Item-level model fit quantifies 

whether the model fits the data obtained for each item (Han & Johnson, 2019). Person-level 

model fit (i.e., person-fit) is the consistency between a student’s responses and the model 

predicted values for that student (Gu, 2011). Person-fit statistics provide a statistical indicator 

for the aberrance of each student’s observed responses by comparing the observed responses 

to the expected responses. 

Providing evidence of adequate test-level model fit is necessary to support the intended 

uses and interpretations of the assessment results (Han & Johnson, 2019). Item-level model fit 

evidence also plays a role in supporting the intended uses and interpretations of assessment 

results. Namely, adequate item-level model fit across all items will translate into adequate test-

level model fit, and inadequate item-level model fit indicates specific areas for improvement 
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that can be used to improve the test-level model fit (Han & Johnson, 2019). Thus, adequate 

test- and item-level model fit are critical to supporting the intended uses and interpretations 

for an assessment (Chen et al., 2013). 

Person-fit also has implications for the intended uses and interpretations of assessment 

results in terms of the inferences made for each student (Walker, 2017). For example, evidence 

of adequate person-fit for a student increases confidence in student-level inferences made 

from the assessment for that student (e.g., Cui & Roberts, 2013). Conversely, evidence of 

person-misfit for a student decreases confidence in student-level inferences made from the 

assessment for that student, even if there is adequate evidence of test- and item-level model 

fit. Thus, evaluating person-fit evidence is important in supporting the intended uses and 

inferences of assessment results, and evidence of person-fit should be evaluated in addition to 

evidence of test- and item-level model fit. 

 Although machine learning has not been previously used to evaluate person-fit, we can 

predict whether students demonstrate evidence of person-misfit with machine learning 

models. Machine learning is an increasingly popular topic, and machine learning is continuously 

being applied to new areas because of its wide range of applicability (e.g., Kucak et al., 2018). 

For example, Zhai et al. (2020a, 2020b) published reviews of how machine learning is used in 

science assessment. More specific to evaluating person-fit evidence, machine learning models 

should be able to identify students with person-misfit by identifying patterns in the data if the 

models include predictor variables that are pertinent to person-fit. Thus, machine learning 

models are a potential method for evaluating person-fit. 
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To date, person-fit has been an underexplored topic within the context of diagnostic 

classification models (DCMs; Rupp et al., 2010). Works defining person-fit statistics have been 

published (e.g., Cui & Leighton, 2009; Cui & Li, 2015), but more work is needed in exploring 

person-misfit detection for DCMs. Given the role of person-fit evidence in supporting the 

intended uses and inferences of assessment results, it is important to develop a better 

understanding of person-misfit detection in DCMs. 

In this study, we evaluate the performance of person-fit metrics to detect person-misfit 

for DCMs. We first present an overview of DCMs, person-fit detection methods for DCMs, and 

machine learning models that we can use to assess person-fit in DCMs. Then, we present the 

methods and results for the simulation study evaluating the performance of person-fit metrics 

to detect person-misfit for DCMs. Finally, we conclude this study with a discussion of the 

findings and their implications for using machine learning models to detect person-fit in 

assessments scaled with DCMs. 

Diagnostic Classification Models 

DCMs (Bradshaw, 2016; Rupp et al., 2010) are growing in popularity for applied and 

operational uses. Rather than a continuous scale score, DCMs categorically estimate students’ 

proficiency in the assessed latent traits (Rupp et al., 2010). DCMs also estimate the probability 

that each respondent has mastered each assessed trait and the probability a respondent in 

each latent class would provide a correct response.  

Model Fit in Diagnostic Classification Models 

Because DCMs conceptualize the assessed latent traits as discrete rather than 

continuous, model fit methods for item response theory (IRT) and structural equation modeling 
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(SEM) that assume a continuous latent trait may be inappropriate for DCMs. For example, IRT 

and SEM indices for absolute test-level model fit include 𝜒2, Root-Mean-Square-Error-of-

Approximation, Goodness-of-Fit, Adjusted GFI, Root Mean Square Residual, Standardized Root 

Mean Square Residual, Normed-Fit Index, Comparative Fit Index, and Parsimony Fit Indices 

(Hooper et al., 2008). However, they are inappropriate to use with DCMs because these indices 

assume a continuous latent trait (Maydeu-Olivares & Joe, 2005, 2014) and DCMs estimate a 

categorical latent trait (Rupp et al., 2010). Thus, alternative measures for assessing person-fit in 

DCMs are needed. 

Person-Fit in Diagnostic Classification Models 

Although person-fit has been relatively understudied in DCMs relative to the amount of 

work on test- and item-level fit (e.g., Chen et al., 2013; Sorrel et al., 2017), four person-fit 

statistics for DCMs have been defined (Cui & Leighton, 2009; Cui & Li, 2015; Liu et al., 2009). 

Additionally, posterior predictive model checking (PPMC) can also be used to evaluate person-

fit in Bayesian DCMs. PPMC provide a statistical indicator for the aberrance of each student’s 

observed responses by comparing the observed responses to responses simulated from the 

parameter values at each iteration of the posterior distribution. 

Person-Fit Statistics 

Only four person-fit statistics for DCMs have been defined in the literature: a likelihood 

ratio test (Liu et al., 2009), the Hierarchy Consistency Index (HCI; Cui & Leighton, 2009), the 

Response Conformity Index (RCI; Cui & Li, 2015), and a modified 𝑙𝑧 statistic (Cui & Li, 2015). 
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Likelihood Ratio Test. Liu et al. (2009) used a model-based approach to assess person-fit 

in DCMs by evaluating whether a DCM that includes a parameter for aberrant responses fits the 

data better than a DCM without the aberrant response parameter. The underlying assumption 

of Liu et al. (2009) is that DCMs likely do not fit data with aberrant responses unless an aberrant 

response parameter is included. Thus, to improve model fit when aberrance is present, Liu et al. 

(2009) suggest adding a parameter, 𝝆, to represent the probability of a student providing an 

aberrant response. 

After estimating the DCM and the DCM with the aberrant response parameter, Liu et al. 

(2009) suggested using the likelihood ratio test based on the marginal likelihood to assess 

person-fit. The likelihood ratio test examines whether a DCM that allows for the probability of a 

student providing an aberrant response fits the data better than a DCM without the aberrant 

response parameter while accounting for the added aberrant response parameter. 

Hierarchical Consistency Index. The HCI statistic (Cui & Leighton, 2009) was designed to 

be used with assessments using a hierarchical Q-matrix (e.g., Liu et al., 2017); however, the HCI 

statistic can be used when an attribute hierarchy is not present. When a student responds 

correctly to an item measuring an attribute, the HCI statistic assumes that this student should 

also respond correctly to all the other items measuring the same attribute. Similarly, when a 

student responds correctly to an item measuring two attributes, the HCI statistic assumes that 

this student should also respond correctly to all the other items measuring either of those 

attributes. For example, when a student responds correct to an item measuring Attribute 1 and 

Attribute 2, the HCI statistic assumes this student should respond correctly to all items 
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measuring both Attribute 1 and Attribute 2, all items measuring only Attribute 1, and all items 

measuring only Attribute 2. 

Cui and Leighton (2009) defined the HCI statistic as 

 
𝐻𝐶𝐼 = 1 −

2 ∑ ∑ 𝑋𝑗𝑖ℎ𝜖𝑆𝑖𝑖𝜖𝑆𝑐𝑗
(1 − 𝑋𝑗ℎ)

N𝑗
 ( 3) 

where 𝑆𝑐𝑗 is the set of items measuring the attribute(s) that were answered correctly by 

student j, 𝑆𝑖 is the set of items measuring any of the attributes measured by item i, 𝑁𝑗 is the 

number of comparisons made for student j, 𝑋𝑗𝑖 is the dichotomously scored item response to 

item i for student j, and 𝑋𝑗ℎ is the dichotomously scored item response to item h for student j. 

The HCI statistic can range from -1 to 1, with values near 1 indicating better person-fit and 

values near -1 indicating worse person-fit. 

Conceptually, the HCI statistic is a function the number of inconsistencies (i.e., the 

number of times a student answers one item correctly while answering another item that 

measures any of the assessed attributes incorrectly). The maximum number of inconsistencies 

results in 𝐻𝐶𝐼 = −1. The minimum number of inconsistencies results in 𝐻𝐶𝐼 = 1. For example, 

suppose a student completes three items assessing a single attribute, and this student responds 

correctly to the first two items (i.e., Item 1 and Item 2) and incorrectly to the final item (i.e., 

Item 3). In this example, the item response for Item 1 is then compared to the item response 

for Item 2 and Item 3. Similarly, the item response for Item 2 is then compared to the item 

response for Item 1 and Item 3. Since 𝑁𝑗 is the number of comparisons, 𝑁𝑗 = 4 in this example. 

When the compared item responses are both correct responses (e.g., Item 1 and Item 2), 

𝑋𝑗𝑖(1 − 𝑋𝑗ℎ) reduces to 1(1 − 1) = 1(0) = 0. In contrast, when the compared item responses 
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include one correct response and one incorrect response (e.g., Item 1 and Item 3), 𝑋𝑗𝑖(1 − 𝑋𝑗ℎ) 

reduces to 1(1 − 0) = 1(1) = 1. For this example, 𝐻𝐶𝐼 = 1 −
2(0+1+0+1)

4
, which reduces to 

1 −
4

4
= 0. Thus, the two inconsistent item comparisons (Item 1 compared to Item 3 and Item 2 

compared to Item 3) contributed person-misfit, while the consistent item comparisons between 

Item 1 and Item 2 did not. 

Response Conformity Index. The RCI statistic (Cui & Li, 2015) measures the consistency 

between a student’s observed responses and the expected responses given the student’s 

estimated attribute mastery profile and the conditional probabilities of responding correctly 

given attribute mastery. In other words, masters are expected to respond correctly and non-

masters are expected to respond incorrectly at rates specified by the estimated item 

parameters. While similar to the HCI statistic, the RCI statistic compares the observed and 

expected responses across all items, rather than just the items that the student responded to 

correctly. 

Cui and Li (2015) defined the RCI statistic as 

 

𝑅𝐶𝐼 = ∑ |

𝐼

𝑖=1

𝑅𝐶𝐼𝑗𝑖| = ∑ |

𝐼

𝑖=1

ln(−
𝑋𝑗𝑖 − 𝜋𝑗𝑖

𝐼𝑗𝑖 − 𝜋𝑗𝑖
)𝑋𝑗𝑖+𝐼𝑗𝑖| ( 4) 

where 𝜋𝑗𝑖  is the probability of student j providing a correct response to item i given the 

student’s mastery classification, 𝐼𝑗𝑖  is the dichotomously scored expected response from 

student j to item i given the student’s mastery classification, and 𝑋𝑗𝑖 is the dichotomously 

scored observed item response to item i for student j. 𝐼𝑗𝑖  takes a value of 1 when the student 

has mastered all the assessed attributes, and 𝐼𝑗𝑖  takes a value of 0 when the student has not 
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mastered all the assessed attributes. The RCI statistic ranges from 0 to infinity, with values near 

0 indicating better person-fit. 

Conceptually, the RCI statistic is measuring the unexpectedness of inconsistent 

responses. Put simply, consistent responses do not contribute to person-misfit as quantified by 

the RCI statistic. When the response is inconsistent (e.g., 𝑋𝑗𝑖 ≠ 𝐼𝑗𝑖), 𝑙𝑛 (−
𝑋𝑗𝑖−𝜋𝑗𝑖

𝐼𝑗𝑖−𝜋𝑗𝑖
) reduces to 

𝑙𝑛 (
1−𝜋𝑗𝑖

𝜋𝑗𝑖
) when 𝑋𝑗𝑖 = 1 and 𝐼𝑗𝑖 = 0 and to 𝑙𝑛 (

𝜋𝑗𝑖

1−𝜋𝑗𝑖
) when 𝑋𝑗𝑖 = 0 and 𝐼𝑗𝑖 = 1. Hence, the 

degree of unexpectedness is purely a function of the conditional probability of providing a 

correct response given attribute mastery status. For example, suppose a master responds 

incorrectly (i.e., 𝐼𝑗𝑖 = 1 and 𝑋𝑗𝑖 = 0) to a relatively easy item for masters (e.g., 𝜋𝑗𝑖 = .8). In this 

example, the unexpectedness of this response would be 
.8

1−.8
=

.8

.2
= 4 and 𝑙𝑛(4) ≈ 1.39. In 

contrast, now suppose a master responds incorrectly (i.e., 𝐼𝑗𝑖 = 1 and 𝑋𝑗𝑖 = 0) to a relatively 

more difficult item for masters (e.g., 𝜋𝑗𝑖 = .55). For this relatively more difficult item, the 

unexpectedness of this response would be 
.55

1−.55
=

.55

.45
≈ 1.22 and 𝑙𝑛(1.22) ≈ 0.20. As can be 

seen from this example, the unexpectedness of the incorrect response from a master to a more 

difficult item is lower, reflecting how the RCI statistic is a function of the conditional probability 

of responding correctly. 

𝒍𝒛 Statistic. Cui and Li (2015) extend the 𝒍𝟎 and 𝒍𝒛 statistics from the IRT context to 

DCMs. In contrast to the form of the Levine and Rubin (1979) 𝒍𝟎 statistic, Cui and Li (2015) use 

natural logarithm properties to define 𝒍𝟎 as 

 

𝑙0 = ln ∏[

𝐼

𝑖=1

𝜋
𝑗𝑖

𝑋𝑗𝑖(1 − 𝜋𝑗𝑖)
1−𝑋𝑗𝑖

]  ( 5) 
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where 𝑋𝑗𝑖 is a dichotomously scored response to item i by student j and 𝜋𝑗𝑖  is the conditional 

probability of student j providing a correct response to item i given the student’s estimated 

attribute mastery status. The expected value of 𝑙0 is determined by the number of items a 

student took and their corresponding conditional probabilities. The expected value can be 

calculated using 

 

𝐸𝑙0
= ∑[

𝐼

𝑖=1

𝜋𝑗𝑖 ln(𝜋𝑗𝑖) + (1 − 𝜋𝑗𝑖)ln(1 − 𝜋𝑗𝑖)] ( 6) 

and the variance of 𝑙0 can be calculated using 

 

𝑉𝑎𝑟𝑙0
= ∑ 𝜋𝑗𝑖

𝐼

𝑖=1

(1 − 𝜋𝑗𝑖)ln(
𝜋𝑗𝑖

1 − 𝜋𝑗𝑖
) ( 7) 

The observed 𝑙0 statistic is then compared to the expected value and variance by calculating a 

z-score. This is the 𝑙𝑧 statistic, which follows a standard normal distribution, with numbers 

closer to zero indicating better person-fit. Theoretically derived cut points of -1.96 and 1.96 can 

be set for detecting aberrant responses with 𝛼 = .05, using the properties of a standard normal 

distribution. 

Posterior Predictive Model Checking 

PPMCs are a method for evaluating absolute model fit in Bayesian models (Gelman et 

al., 2013). PPMCs simulate data based on the parameter values from each iteration of the 

posterior distribution and compare the simulated data to the observed data. The rationale is 

that if the model has good fit, data simulated from the posterior distribution will be similar to 

the observed data. Thus, the similarity of the observed data relative to the simulated data is 

indicative of how well the model fit the data. 
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To evaluate the similarity between the observed and simulated data, a discrepancy 

statistic is selected to quantify a pertinent aspect of the data, and the discrepancy statistic for 

the observed data is compared to the discrepancy statistic from each iteration of the posterior 

distribution. The effectiveness of PPMC relies on selecting a discrepancy statistic that captures 

features of the data that are reflective of model fit. 

The PPMC in this study used two discrepancy statistics. The first PPMC used the 

difference between the proportion of correct responses and the expected percent correct given 

estimated attribute mastery status as the discrepancy statistic. For brevity, we will refer to this 

discrepancy statistic as the raw difference. The equation for the raw difference PPMC is 

provided in Equation 8 

 𝑑𝑖𝑓𝑓 = �̂� − 𝜋0 ( 8) 

where �̂� is the proportion of correct responses for a student and 𝜋0 is the expected percent 

correct given estimated attribute mastery status.  

The second PPMC used the number of correct responses as the discrepancy statistic. 

This discrepancy statistic simply calculated the number of correct responses for each student. 

As previously mentioned, the similarity between the observed and simulated data are 

indicative of model fit. For example, there is adequate person-fit based on the second PPMC 

when the observed number of correct responses falls towards the center of the distribution of 

the number of correct responses from the data simulated using the posterior distribution 

parameter values. The results of PPMC are often quantified as posterior predictive p values 

(ppp values), where the ppp value is the percentile for the observed discrepancy statistic in the 
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distribution of the simulated discrepancy statistics. Cut-points of .025 and .975 are used in this 

study to flag person-misfit when ppp values are in the tails of the distribution. 

Machine Learning 

Machine learning is an exploratory statistical modeling approach that identifies trends 

within the data to better predict the outcome variable (Hoover, 2022). Machine learning 

models can be either supervised or unsupervised (e.g., Jordan & Mitchell, 2015). In supervised 

machine learning models, the outcome variable is known, which allows for optimizing the 

model for predicting the outcome variable (Bell, 2015). In unsupervised machine learning 

models, the models do not make use of the outcome variable in optimizing the model (Jain et 

al., 1999). In the case of the person-fit, students’ true person-fit statuses are latent variables, 

meaning that we cannot be certain whether a student is truly an aberrant responder or not. 

Because of this, unsupervised machine learning models are necessary for identifying students 

with person-misfit. Consequently, we focused on unsupervised methods in this topic guide. 

Machine learning models can be used to assess person-fit, even though little work has 

been done in this area. To date, only Zhu et al. (2022) has conducted work using machine 

learning models to assess person-fit in DCMs. Notably, however, the Zhu et al. study makes 

multiple assumptions and design choices that limit its generalizability. More specifically, Zhu et 

al. train a supervised neural network using simulated data to assess person-fit. Consequently, 

the generalizability of this approach is dependent on the ability to adequately simulate data 

that is realistic to operational data. To highlight such difficulties, the occurrence of person-

misfit is a complex process that can occur in a variety of forms and be affected by a wide range 

of factors. As such, it may be incredibly difficult to simulate person-misfit with a generating 
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model that adequately maps on to how person-misfit occurs in an operational setting. Along 

similar lines, researchers have previously discussed the difficulty of accurately simulating data 

to reflect realistic cheating behaviors (e.g., Cui & Li, 2015; Meijer & Sijtsma, 1995). Thus, 

additional work is needed to establish a generalizable machine learning based approach for 

assessing person-fit in DCMs without making the machine learning models dependent on the 

quality of a data simulation process. 

The majority of unsupervised machine learning models use clustering algorithms that 

organize data into similar groups (e.g., Alloghani et al., 2020), although non-clustering 

unsupervised algorithms such as principle components analysis exist. Clustering algorithms use 

predictor variables to group similar students together. Common clustering unsupervised 

machine learning models include k-means clustering, hierarchical clustering, and latent class 

analysis (LCA). We used three machine learning approaches in this study: k-means clustering, 

LCA, and boosted LCA. 

K-Means Clustering. We conducted k-means clustering with two latent classes (i.e., 𝒌 =

𝟐) to flag students with person-misfit. Two latent classes were chosen based on the definition 

of the outcome variable (i.e., person-fit), where one class represents non-aberrant responders 

(i.e., those with adequate person-fit) and the other class represents aberrant responders (i.e., 

those with person-misfit). 

We used five predictor variables in the k-means clustering model. These predictor 

variables included the three person-fit statistics (HCI, RCI, 𝑙𝑧) and the ppp values for the two 

PPMC. 
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In k-means clustering, class membership is determined by placing each student into the 

nearest of the k clusters. The clusters are based on the values of the five predictor variables. 

Practically, this means that each student is placed into the cluster where the predictor variables 

for the student are most similar to the values for the cluster. 

The cluster labels were added post hoc in this k-means clustering model. The cluster 

containing fewer students was labelled as the aberrant responders class based on the definition 

of aberrant responding where aberrance implies a deviation from the usual response pattern. 

Thus, the majority of students are expected to be non-aberrant responders, which supports 

labeling the smaller of the two clusters as aberrant responders. 

Latent Class Analysis. We conducted LCA with two latent classes to flag students with 

person-misfit. The two latent classes were again chosen because of the definition of person-fit, 

where one class represents aberrant responders and the other class represents non-aberrant 

responders. 

We used five predictor variables in the LCA. These predictor variables included the three 

person-fit statistics (HCI, RCI, 𝑙𝑧) and the ppp values for the two PPMC. 

Similar to DCMs, latent class analysis produces probability estimates that each student is 

a member of each class. Class membership can then be determined by the largest probability of 

class membership. This means that students were assigned to the class with the probability 

estimate greater than .50. For example, a student with a .55 probability of being a member of 

class 1 and a .45 probability of being a member of class 2 would be classified as a member of 

class 1, since .55 is greater than .50. 
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The latent class labels were added post hoc in this exploratory LCA. The latent class 

containing fewer students was labelled as the aberrant responders class based on the definition 

of aberrant responding where aberrance implies a deviation from the usual response pattern. 

Thus, the majority of students are expected to be non-aberrant responders, which supports 

labeling the smaller of the two classes as aberrant responders. 

Boosted Latent Class Analysis. Machine learning models can quickly become complex, and 

this complexity can have implications for the computational time and requirements of the 

model (Al-Jarrah et al., 2015). Researchers have created boosted machine learning algorithms, 

which consist of many simpler models, to circumvent these concerns (Schapire, 2003). The 

simpler models use fewer predictor variables, which reduces their complexity and subsequently 

the computational demands (Roe et al., 2020). However, to make accurate predictions, multiple 

simpler models need to be estimated (Schapire, 2003). The underlying rationale is that 

estimating many simple models may be more efficient than estimating a single, incredibly 

complex model. Thus, boosted LCA entails estimating multiple LCA models, where each LCA 

model uses relatively few predictor variables, and all of the LCA models contribute to the 

classification from the boosted LCA. 

We used boosted LCA with two latent classes to flag students with person-misfit, where 

each boosted LCA consisted of 10 LCA. Many of the modeling approaches for the boosted LCA 

were similar to those for the LCA, since boosted LCA consists of multiple simpler LCA models. 

The two latent classes were again chosen because of the definition of person-fit, where one 

class represents aberrant responders and the other class represents non-aberrant responders. 
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For each LCA model within the boosted LCA model, one, two, or three predictor 

variables were randomly selected from the available predictor variables. The possible predictor 

variables for the boosted LCA included the three person-fit statistics (HCI, RCI, 𝑙𝑧) and the ppp 

values for the two PPMC. 

Within each LCA model in the boosted LCA model, class membership was determined by 

the largest probability of class membership, meaning students were assigned to the class with 

the probability estimate greater than .50. As with the approach for LCA, the latent class 

containing fewer students in each LCA of the boosted LCA model was labelled as the aberrant 

responders class. Since each LCA produced a classification for each student, each student was 

classified 10 times within the boosted LCA. Each of the 10 LCA models classified each of the 

students as having adequate or person-misfit. When six or more of the classifications indicated 

that a student demonstrated evidence of person-misfit, the student was classified as having 

person-misfit by the boosted LCA. Otherwise, the student was classified as having adequate 

person-fit by the boosted latent class analysis. The threshold of six was chosen so that the level 

of evidence required to classify students as showing evidence of person-misfit was high, with 

the hope that this would avoid elevated Type I error rates. 

Evaluating the Machine Learning Models. To compare the performance of the k-means 

clustering, LCA, and boosted LCA models to the person-fit statistics and the PPMC, we 

evaluated the performance of the three machine learning models using the Type I error and 

power rates within each condition. 
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Objectives 

In this study, we report the results of a simulation study designed to evaluate the performance 

of the two new machine learning based metrics to detect person-misfit for DCMs relative to the 

HCI, RCI, 𝑙𝑧, and PPMC metrics. 

Methods 

In this study, we manipulated three factors: the number of assessed attributes, the 

minimum number of items per attribute, and the proportion of students with misfit. The levels 

for the number of assessed attributes were two and three. The levels for the minimum number 

of items per attribute were three and 10. The levels for the proportion of students with misfit 

were 0%, 10%, and 20%. This resulted in 12 total conditions in this simulation. We simulated 

100 repetitions simulated for each condition. 

Data Simulation 

In each repetition, we simulated 1,000 students. We chose to simulate 1,000 students 

based on the recommendation of Sen and Cohen (2020), who recommended sample sizes of at 

least 1,000 to obtain precise parameter estimates from DCMs. 

In each condition, the test length (T) was the product of the minimum number of items 

per attribute (I) and the number of attributes (A), with 𝑇 = 𝐼 x 𝐴. The first half of the items in 

each condition formed an identify matrix. The second half of items also formed an identity 

matrix, but each item had a 50% chance of measuring a second attribute. Items were 

constrained to measure no more than two attributes. Thus, each attribute is measured by at 

least the minimum number items per attribute. 
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Dichotomous attribute mastery status for each student was determined using the base 

rate, between-attribute correlation, and a random number. The base rate for mastering each 

attribute was .50, the between-attribute correlation was drawn from 𝑈(. 00, .80), and a 

random number was drawn from 𝑈(0,1). Base rate determines the proportion of the students 

that have mastered the given attribute. The between-attribute correlation determines the 

strength of relationship between the attributes, with higher between-attribute correlations 

indicating mastery of one attribute is more likely to be associated with mastery of the other 

attribute. We then aggregated each student’s dichotomous attribute mastery statuses to form 

an attribute mastery profile. 

We randomly drew the item intercept parameters from 𝑈(−2.2, −1.4), which 

corresponds to 𝑈(. 1, .2) on the probability scale. For items measuring a single attribute, we 

randomly drew the item main effect parameters from 𝑁(3,0.25). For items measuring two 

attributes, we randomly drew the item main effect parameters from 𝑁(3,0.5). We constrained 

all of the item main effect parameters to be positive to uphold the assumption of monotonicity. 

For items measuring two attributes, we randomly drew the item interaction parameters from 

𝑁(1,0.17). We constrained the item interaction parameters to be greater than negative one 

times the small of the two item main effect parameters to ensure that masters of both assessed 

attributes have a higher conditional probability of responding correctly than masters of only 

one of the assessed attributes. We chose the distributions for the item main effect and 

interaction parameters based on the simulations conducted by Johnson and Sinharay (2018). 
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Imposing Person-Misfit 

Students were randomly assigned to have person-misfit in accordance with the 

proportion of misfit present. Students were randomly assigned to have one of four types of 

misfit. Each type of misfit was equally likely. The types of misfit were: 

• Creative responders. This type of misfit is defined as true masters who interpret the 

item in a non-standard manner, leading to an incorrect response. More specifically, 

creative responders respond incorrectly to all items measuring the first attribute even if 

they were masters of this attribute. 

• Random responders. With this type of person-misfit, students respond at random to all 

the completed items with a 25% probability of responding correctly. We chose this 25% 

probability of responding correctly based on the probability of randomly guessing the 

correct answer to a multiple choice item with four response options. 

• Sleepers. In this condition, students responded to the first 33% of items incorrectly as a 

representation of situations where students may miss the initial items on an assessment 

due to anxiety rather than due to a lack of proficiency. The first 33% of items were 

chosen because the minimum number of items per attribute in this study is three, and 

imposing misfit on the first 33% of items would affect at least one item for each 

attribute. 

• Fatigued responders. Students who were “fatigued” are those who responded to the 

last 33% of items incorrectly as a representation of situations where students may miss 

the last items on an assessment due to mental fatigue from the assessment rather than 

due to a lack of proficiency. The last 33% of items were again chosen because the 
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minimum number of items per attribute in this study is three, so imposing misfit on the 

last 33% of items would affect at least one item for each attribute. 

Consider a student who completed six items with no misfit. The hypothetical Q-matrix 

for these six items is presented in Table 1. This student might have a simulated response 

pattern across items of [0, 1, 1, 0, 1, 0]. When this student is assigned to have person-misfit, 

this response pattern would result in the following response patterns: 

• creative: [0, 0, 0, 0, 1, 0] 

• sleeping: [0, 0, 1, 0, 1, 0] 

• fatigue: [0, 1, 1, 0, 0, 0] 

For students with creative, sleeping, or fatigue patterns, the bolded responses indicate 

where an incorrect response was imposed due to person-misfit. The random response pattern 

was excluded from this example because the random response pattern is less prescriptive. 

Table 1 

Hypothetical Q-Matrix 

Attribute 1 Attribute 2 

1 0 
0 1 
1 0 
0 1 
1 1 
1 1 

 

Person-misfit can be operationalized as spuriously high (i.e., students overperform given 

their true attribute mastery profiles) or spuriously low scores (i.e., students underperform given 

their true attribute mastery profiles). Although spuriously high scores are possible in practice, 

the types of person-misfit imposed in this study exclusively produced spuriously low scores 
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(e.g., Liu et al., 2009). Flagging person-misfit for spuriously high scores was not emphasized in 

this study because there are at least two types of mechanisms leading to spuriously high scores. 

The first type of mechanism is behaviors or circumstances that lead to improved performance 

through randomness and factors associated with the assessment. Examples of this type of 

mechanism might include a student correctly guessing item responses at an unexpectedly high 

rate (e.g., a random responder with a higher base rate of responding correctly) or a student 

being cued to the correct response for one item on the assessment based on another item on 

the assessment. These sorts of spuriously high person-misfit should conceivably be flagged 

similarly to the spuriously low person-misfit examined in this study given the relationship 

between how the types of person-misfit are imposed. The second type of mechanism is 

behaviors or circumstances that lead to improved performance contingent upon external 

factors. One example of this would be a student receiving assistance from a teacher or peer. As 

pointed out by Meijer and Sijtsma (1995) and reiterated by Cui and Leighton (2009), this type of 

spuriously high person-misfit is problematic for simulations because the level of aberrance in 

the resulting responses depends on the frequency and quality of these behaviors, which is not 

easily introduced into a simulation study. Consequently, this type of person-misfit was not the 

focus of this study. Thus, this study focused exclusively on spuriously low person-misfit. 

Model Estimation 

For each simulated data set, we estimated a log-linear cognitive diagnosis model (LCDM; 

Henson et al., 2009). We chose the LCDM because it is a general DCM that subsumes many 

other subtypes of DCMs, and thus supports the generalizability of our findings. From each 

model, the item parameters (i.e., the conditional probabilities of masters and non-masters 
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providing a correct response) and the estimated mastery probability for each student were 

used to estimate the person-fit metrics. In this study, we dichotomized the estimated mastery 

probabilities for each student using a cut-point of .50. 

Flagging Person-Misfit 

In this study, we flagged students for person-misfit using the HCI, RCI, and 𝑙𝑧 person-fit 

statistics but not the likelihood ratio test. Liu et al. (2009) found that the likelihood ratio test did 

not detect spuriously low scores as well as it detected spuriously high scores. Thus, we did not 

use the likelihood ratio test to assess person-fit in this study. 

The HCI, RCI, and 𝑙𝑧 person-fit statistics were calculated for each student in each 

condition. While the 𝑙𝑧 statistic follows a standard normal distribution, which allows for 

statistically flagging students demonstrating person-misfit, the HCI and RCI statistics do not 

follow a known distribution. Thus, cut-points for flagging person-misfit with the HCI and RCI 

statistics have to be determined for use within this study. 

Using the process reported by Cui and Li (2015) and Cui and Leighton (2009), who 

followed established approaches for determining cut-points for person-fit statistics (e.g., Seo & 

Weiss, 2013; van Krimpen-Stoop & Meijer, 2002), we included a condition with no person-misfit 

to ascertain the empirical distributions of the HCI and RCI statistics when there was adequate 

person-fit for all students. The HCI cut-points were determined for each response pattern, and 

the RCI cut-point was determined for each attribute mastery profile. These cut-points were 

determined independently for the conditions based on the number of measured attributes and 

the minimum number of items per attribute. By knowing the empirical distributions of the HCI 

and RCI statistics when no person-misfit was present, we can identify the cut-points for flagging 
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the most extreme five percent of the HCI and RCI statistics for detecting person-misfit. More 

specifically, in each repetition of the condition with no person-misfit, we identified the cut-

point for the most extreme five percent of the HCI and RCI statistics, and we then averaged 

those repetition-specific thresholds across the 100 repetitions within the condition to establish 

our HCI and RCI cut-points for the other conditions with the same number of measured 

attributes and minimum number of items per attribute in this study. 

For the 𝑙𝑧 person-fit statistic, thresholds of -1.96 and 1.96 were used to flag students 

showing evidence of an aberrant response pattern, since the 𝑙𝑧 statistic has a standard normal 

distribution. 

For the PPMC, students are flagged for person-misfit when their ppp values are less than 

.025 or greater than .975. The cut-points are designed to flag students with observed 

discrepancy statistics that fall in either tail of the distribution of discrepancy statistics from the 

simulated data. 

For the k-means clustering and LCA models, students are flagged for person-misfit when 

they are assigned to the smaller of the two latent classes. As previously described, two latent 

classes (aberrant responders and non-aberrant responders) were used based on the definition 

of person-fit, and the smaller latent class was labelled as aberrant responders since aberrance 

implies a deviation from the usual response pattern. 

For the boosted LCA, students are flagged for person-misfit when they are labelled as 

aberrant responders by six or more of the LCAs in the boosted LCA. Similar to the k-means 

clustering and LCA models, two latent classes were used for each LCA in the boosted LCA, and 

the smaller latent class was labelled as aberrant responders. 
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In this study, we calculated Type I error and power rates for each person-fit index within 

each condition. The Type I error rate is the proportion of students flagged for person-misfit 

when the students were not randomly assigned to have person-misfit. The power rate is the 

proportion of students flagged for person-misfit when they were randomly assigned to have 

person-misfit. 

Follow-Up Analyses 

We calculated the classification accuracy of the estimated LCDMs for those with and 

without imposed person-level misfit as follow-up analyses for this study. 

Results 

We estimated an LCDM and applied the person-fit detection methods for each of the 

1,200 simulated repetitions across the 12 conditions. The Type I error and power rates for the 

person-fit detection methods are presented by condition in Table 2 and Table 3, respectively. 

The performance of the person-fit detection methods was suboptimal. The Type I error rates 

for many of the person-fit detection methods were elevated (HCI, number correct PPMC, LCA, 

k-means clustering), slightly elevated for the RCI statistic, and well controlled for the 𝑙𝑧 statistic 

and the distance PPMC. However, the power rate followed a similar pattern. For example, the 

Type I error rate was well controlled for the 𝑙𝑧 statistic, but the power rate for the 𝑙𝑧 statistic 

was less than .20 in each condition, which indicates a pattern of underflagging. The observed 

power rates were too low for operational use for all of the person-fit detection, with the 

exception of the power of k-means clustering in some of the conditions measuring three 

attributes with a minimum of 10 items per attribute. However, the Type I error of the k-means 

clustering method was extremely elevated for these conditions. Thus, none of the applied 
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person-fit detection methods demonstrated acceptable Type I error and power rates. Potential 

reasons for poor performance are described in the Discussion section. 

We present the attribute- and class-level classification accuracy by condition in Table 4. 

For students with good person-fit, the attribute-level classification accuracy was high with 

estimates ranging from .91 to .97, and the class-level classification accuracy was also high with 

estimates ranging from .77 to .94. For students with person-misfit, the attribute- and class-level 

classification accuracy was much lower with attribute-level classification accuracy ranging from 

.73 to .78 and class-level classification accuracy ranging from .48 to .62. 

The follow-up analyses indicated that a significant proportion of students were 

misclassified when person-misfit was present. For example, the attribute-level classification 

accuracy dropped by approximately .20 when person-misfit was present compared to when 

students had good person-fit. Similarly, the class-level classification accuracy dropped by 

approximately .30 when person-misfit was present compared to when students had good 

person-fit. The classification accuracy when students had good person-fit was similar to 

classification accuracy estimates reported by Shan and Wang (2020). It is possible that poor 

classification accuracy obscured evidence of person-misfit, which subsequently led to poor 

person-fit detection. 
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Table 2 

Type I Error Rates, by Condition 

Attributes 

Minimum 
items per 
attribute 

Proportion 
misfit HCI RCI lz 

Number 
correct 
PPMC 

Distance 
PPMC LCA 

K-means 
clustering 

Boosted 
LCA 

2 3 0 .39 .07 .02 .23 .02 .04 .18 .18 
2 3 10 .42 .07 .02 .22 .02 .05 .17 .00 
2 3 20 .43 .07 .02 .22 .02 .05 .18 .18 
2 10 0 .52 .07 .05 .35 .04 .39 .07 .00 
2 10 10 .50 .06 .04 .35 .04 .36 .06 .12 
2 10 20 .50 .06 .04 .35 .04 .35 .07 .07 
3 3 0 .41 .08 .02 .29 .02 .14 .09 .19 
3 3 10 .42 .08 .02 .29 .02 .14 .09 .09 
3 3 20 .43 .07 .02 .29 .02 .13 .09 .13 
3 10 0 .48 .08 .04 .40 .04 .64 .02 .21 
3 10 10 .37 .07 .04 .40 .04 .63 .02 .26 
3 10 20 .37 .06 .03 .39 .04 .61 .02 .21 
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Table 3 

Power Rates, by Condition 

Attributes 

Minimum 
items per 
attribute 

Proportion 
misfit HCI RCI lz 

Number 
correct 
PPMC 

Distance 
PPMC LCA 

K-means 
clustering 

Boosted 
LCA 

2 3 10 .41 .10 .05 .04 .03 .07 .24 .00 
2 3 20 .40 .10 .05 .03 .04 .08 .24 .25 
2 10 10 .50 .14 .14 .10 .07 .49 .10 .20 
2 10 20 .50 .12 .13 .10 .06 .47 .11 .11 
3 3 10 .42 .14 .06 .07 .04 .22 .13 .13 
3 3 20 .42 .11 .06 .07 .03 .20 .13 .19 
3 10 10 .34 .18 .16 .13 .08 .70 .04 .40 
3 10 20 .33 .15 .14 .13 .08 .69 .04 .31 
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Table 4 

Attribute- and Class-Level Classification Accuracy, by Condition 

    Students with good person-fit Students with person-misfit 

Condition Attributes 

Minimum 
items per 
attribute 

Proportion 
misfit 

Attribute 
classification 

accuracy 

Class 
classification 

accuracy 

Attribute 
classification 

accuracy 

Class 
classification 

accuracy 

1 2 3 0 .91 .84 --- --- 
2 2 3 10 .91 .83 .73 .57 
3 2 3 20 .91 .83 .74 .58 
4 2 10 0 .97 .94 --- --- 
5 2 10 10 .97 .94 .76 .60 
6 2 10 20 .97 .94 .77 .62 
7 3 3 0 .92 .77 --- --- 
8 3 3 10 .91 .77 .75 .48 
9 3 3 20 .92 .77 .75 .49 

10 3 10 0 .97 .92 --- --- 
11 3 10 10 .97 .91 .78 .54 
12 3 10 20 .97 .91 .78 .54 

Total --- --- --- .94 .86 .76 .55 
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Discussion 

In this study, we compared the performance of the new machine learning based person-

fit metrics to performance of the HCI, RCI, 𝑙𝑧, and PPMC person-fit metrics. Generally, the 

performance of the person-fit indices was not adequate. While the Type I error rates were 

controlled in some cases, none of the indices demonstrated adequate power. The observed 

power rates were below previously reported power rates for detecting person-misfit (e.g., Cui 

& Li, 2015). 

The follow-up analysis indicated imposing person-misfit had consequences for 

classification accuracy. When there was adequate person-fit, the classification accuracy was 

consistent with previous studies (e.g., Shan & Wang, 2020). However, the classification 

accuracy was considerably lower when person-misfit was present. This suggests that the poor 

classification accuracy may have led to downstream consequences for evaluating person-fit. 

The RCI statistic, the lz statistic, and the raw difference PPMC incorporate the conditional 

probability of providing a correct response given estimated mastery status, so the values for 

these statistics change when the estimated mastery status changes. It is possible that a given 

response pattern would lead a master to be flagged for person-misfit but a non-master would 

not be flagged. Thus, the imposed person-fit in this study that led to spuriously low scores may 

have led true masters to be misclassified as non-masters who were not flagged for person-

misfit. 

The performance of the machine learning models was likely affected as a downstream 

consequence of the performance of the other person-fit indices. Ultimately, machine learning 

models need predictors that are related to the outcome variable, and stronger relationships 
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usually lead to better performance. Because the person-fit statistics and the PPMC were not 

effective in flagging person-misfit, these indices were ineffective as predictors in the machine 

learning models. Consequently, the suboptimal performance of the machine learning models is 

unsurprising, given the poor performance of the other person-fit detection methods. However, 

the performance of the machine learning based person-fit metrics is not entirely dependent on 

the performance of the other person-fit detection methods. It is possible that improved but still 

inadequate performance of the other person-fit detection methods could lead to adequate 

performance for the machine learning based person-fit metrics.  

Understanding Poor Person-Fit Detection 

To better understand our findings, we examined differences between the current study 

and previous studies to identify factors that may facilitate person-misfit detection. We 

identified multiple differences in the simulation designs (and hence operational contexts) that 

may affect person-misfit detection. We observationally identified these differences by 

comparing the simulation designs between the current study and previous studies. 

Classification Accuracy 

The existing person-fit statistics assume high classification accuracy. More specifically, 

the RCI and 𝑙𝑧 person-fit statistics incorporate information from the mastery status when 

evaluating person-fit, meaning that changes in estimated mastery status affect the value of the 

person-fit statistic. This can be detrimental to the accurate detection of person-misfit. Thus, 

effective person-misfit detection with the existing person-fit statistics may rely on the students 

being classified accurately even in the presence of person-misfit. 
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Test Length 

We found test length (or the minimum number of items per attribute as it was 

conceptualized in this study) to be related to person-misfit detection. As an example, Cui and Li 

(2015) used conditions with 20 and 40 items to measure three and six attributes in their 

simulation study. They found power increased within each type of person-misfit as test length 

increased. In our study, we used shorter test lengths. For example, consider our two-attribute 

condition with a minimum of three items per attribute (six total items). When sleeping person-

misfit was imposed on the first two items, students only had four items remaining to 

demonstrate attribute mastery. For students who were simulated as true masters of the 

attributes, the remaining four items may have been insufficient to demonstrate attribute 

mastery. Thus, the imposed person-misfit may have led to these masters being classified as 

non-masters, and the observed response patterns for these true masters may not be aberrant 

for a non-master. 

Number of Attributes Assessed 

We also found the number of assessed attributes to be related to detecting person-

misfit. By increasing the number of multi-attribute items, students who are masters of all the 

assessed attributes can use the multi-attribute items to demonstrate attribute mastery. For 

example, suppose person-misfit is only imposed on single-attribute items (e.g., creative misfit). 

By including a significant number of multi-attribute items, students who have mastered 

multiple attributes can demonstrate attribute mastery by responding correctly to these multi-

attribute items.  
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In our study, we included fewer multi-attribute items than Cui and Li (2015). For 

example, in the conditions measuring two attributes with a minimum of 10 items per attribute 

in our study, there were 15 single-attribute items and five two-attribute items on average. With 

creative misfit, there were only five multi-attribute items on average that would allow for 

demonstrating mastery of Attribute 1. Thus, there were limited opportunities for masters of 

Attribute 1 and Attribute 2 to demonstrate mastery of Attribute 1, and there were no 

opportunities for masters of only Attribute 1 to demonstrate mastery of Attribute 1. 

Base Rate of Attribute Mastery 

We found the base rate of attribute mastery to be indirectly related to effectively 

detecting person-misfit. The base rate of attribute mastery determines the number of students 

who have mastered each attribute and ultimately the number of students who have mastered 

multiple attributes. As previously mentioned, students who have mastered multiple attributes 

have additional opportunities to demonstrate attribute mastery in the presence of person-

misfit.  

To demonstrate, Cui and Li (2015) used a .80 base rate of attribute mastery in their 

simulation. This implies approximately 90% of their simulated students in their simulations 

measuring three attributes had mastered multiple attributes. In our study, we simulated 

students with a .50 base rate of attribute mastery. For the conditions measuring two attributes, 

this implies only 25% of our simulated students had mastered multiple attributes. For the 

conditions measuring three attributes, this implies only half of our simulated students had 

mastered multiple attributes. 



  34 

Item Selection for Imposing Person-Misfit 

As one final note for assessment (and simulation) design as it pertains to person-fit 

detection, the effectiveness of person-misfit detection depends on which items are selected for 

misfit to be imposed. For example, in both the current study and previous studies, the single 

attribute items tended to be the first items on the assessment. As a result, imposing sleeping 

misfit tended to impose person-misfit on single-attribute items, and imposing fatigue misfit 

tended to impose person-misfit on multi-attribute items. Systematically imposing misfit on a 

specific type of item in this manner can have downstream consequences for demonstrating 

attribute mastery by affecting students’ opportunities to demonstrate attribute mastery. 

The Combination of These Factors 

The intersection of these observations leads to questions about the effectiveness of the 

existing person-fit statistics to identify person-misfit. Although we did not set out to identify 

issues with flagging person-misfit using the existing person-fit statistics, understanding our 

suboptimal results has highlighted factors that appear to have contributed to success in 

previous studies while contributing to the suboptimal results in our study. Previous studies 

appear to have been conducted to imitate ideal estimation conditions. However, the current 

study imitated reasonable but less than ideal estimation conditions, and we were generally 

unable to identify students with person-misfit. 

Our post hoc observations raise questions pertaining to how robust the existing person-

fit statistics are to reasonable but less than ideal estimation circumstances. For example, 

previous studies have used relatively large numbers of items to measure multiple attributes 

with many multi-attribute items, and these studies have tended to simulate data using high 
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base rates of attribute mastery. The cumulative effect of each of these design choices may be 

significantly contributing to accurate person-misfit detection. For instance, high base rates of 

attribute mastery allow for the majority of students to be masters of multiple attributes and 

consequently have a higher probability of responding correctly to multi-attribute items, which 

supports high classification accuracy. However, would lower base rates of attribute mastery be 

problematic for accurately detecting person-misfit even if the all the other factors were held 

constant? It seems possible that only adjusting one of these factors may not affect person-

misfit detection, but our results appear to indicate that adjusting a sufficient number of these 

factors negatively impacted person-misfit detection. 

Future Research 

At a minimum, an area for future research pertains to the robustness of the existing 

DCM person-fit statistics. More specifically, are these person-fit statistics able to accurately 

identify person-misfit under suboptimal but realistic estimation conditions? For example, base 

rates of attribute mastery approaching .80 may lead to a sizable portion of students mastering 

multiple attributes, but lower base rates may be common in practice, especially in formative or 

through year assessment where additional learning is expected. Given the findings of the 

current study, it remains to be shown at what point the existing person-fit statistics become 

ineffective at detecting person-misfit. 

Another area for future research includes detecting person-misfit when the imposed 

person-misfit leads to a change in the estimated mastery statuses. As previously mentioned, 

many of the simulated conditions in previous studies appear to have imposed person-misfit 

without altering the estimated mastery classifications. It is possible, however, for person-misfit 



  36 

to lead to a change in mastery classification where the changed mastery status may better align 

with the observed responses. Because some existing person-fit statistics incorporate the 

conditional probability of a correct response given a student’s estimated mastery status, such 

changes are fundamental to the identification of students with person-misfit. Additional 

methods and/or person-fit statistics may be needed to overcome this dependency. 

Conclusion 

The person-fit detection methods used in this study were not particularly successful in 

accurately identifying students with person-fit. The methods evaluated in this study 

demonstrated elevated Type I errors and suboptimally low power. Given the poor performance 

of the person-fit statistics and PPMC, it is unsurprising that the machine learning approaches 

were not able to accurately identify students with person-misfit. It is possible that machine 

learning approaches for person-fit may be effective if better predictors of person-fit can be 

established. To better understand our results, we noted discrepancies between our study and 

previous studies examining person-misfit detection in DCM-based assessment, which allowed 

us to identify areas for future research that may improve person-fit evaluation in DCM-based 

assessments. 
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