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Abstract 
 
This study examines the structure of a learning map used for dynamic assessment in grades three 

through high school. Students were assessed on items measuring 307 English language arts 

nodes, a dramatically larger number of skills when compared with previous diagnostic 

assessment analyses. Student response data was used to model mastery probabilities at the node 

level, and these values were used to make recommendations regarding node-to-node connections 

in the learning map as well as node granularity. These findings were shared with content teams 

to serve as supporting evidence in their decision-making process for map revisions pertaining to 

the order and size of cognitive skills. 

 

Objectives 

Dynamic assessment makes use of an underlying map structure to present unique items 

and testlets matched to each individual student’s knowledge, skills, and abilities. In a learning 

map, learning targets take the form of individual nodes, and these nodes are connected to reflect 

how individual skills contribute to and provide the foundation for the development of subsequent 

skills. Connections between nodes in the map represent causal hypotheses about the order of skill 

acquisition, whereby a parent skill would be acquired prior to learning the subsequent (child) 

skill.  

In order to ensure the best possible match of items to students, the learning map 

underlying the assessment system should accurately specify the connections among nodes, as 

well as specify nodes at the appropriate level of the granularity. Each node should represent a 

single, distinctive skill. To the extent connections between nodes are out of order, the items 

presented to students may not accurately match their learning trajectories. Similarly, nodes 
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should measure a single learning target or skill. Should a node measure more than one skill, or a 

collection of nodes actually measure only a single skill, the validity of inferences made from 

student performance on items measuring those skills may be affected.  

To this end, the current paper examines the structure of a learning map in a dynamic 

assessment environment. Connections among the nodes in the map, as well as the granularity of 

individual nodes are examined. Based on the statistical recommendations from these analyses, 

content experts review the findings and provide ultimate recommendations as to whether changes 

should be made in the learning map as a result of the statistical evidence.  

 

Perspective(s) 

 With the growing emphasis on teacher accountability in K-12 education, various 

constituents are increasingly interested in administering assessments that can provide greater 

information on student outcomes. Educators are interested in being able to use the results of 

assessments to guide instruction, specifically pinpointing areas of mastery or weakness (Huff & 

Goodman, 2007; Trout & Hyde, 2006). Researchers also increasingly emphasize the need for 

richer reporting practices, beginning with the call from Snow & Lohman (1989).   

In light of these needs in the educational community, diagnostic classification modeling 

(DCM) has emerged as one technique that can be used to provide specific feedback on student 

ability and areas for improvement. As the name suggests, diagnostic modeling provides the 

unique ability to “diagnose” or identify examinee strengths and weaknesses with regard to the 

specific cognitive processes underlying performance on an assessment (Gierl, 2007; Yang & 

Embretson, 2007). Student likelihood of mastery is represented by the probability of having 

mastered particular skills or attributes within an interconnected web of skill acquisition, with 
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values closer to 1.0 indicating greater likelihood of skill mastery, and values approaching 0.0 

indicating non-mastery. By aggregating these values over students, recommendations can be 

made regarding the optimal map structure. Similarly, Bayesian Network Analysis can be used to 

hypothesize causal relationships among nodes in a learning map by representing the probability 

that a parent node precedes a child node. 

Despite the increasing prevalence of research in the educational measurement and 

cognitive psychology academic communities employing DCM and Bayesian networks in 

simulation studies and diagnostic assessments of a small number of skills, few operational testing 

programs have made use of such statistical methods as the primary psychometric approach for 

analysis of assessment results and score reporting practices, particularly on a large scale. The 

current study addresses this gap in the research by highlighting how DCMs and Bayesian 

networks can be used to evaluate the structure of a learning map and provide statistical 

recommendations for modifications of the learning map underlying a diagnostic assessment 

system.  

 

Method 

 The current study covers three critical analyses in the evaluation of the underlying 

structure of a learning map used in a dynamic assessment environment.  

1. Analysis of the connections between nodes in the learning map 

2. Analysis of node granularity in the learning map 

3. Content review of statistical recommendations  

 The learning map underlying the dynamic assessment system reflects a complex 

arrangement of nodes that allow for diagnosis of skill mastery and areas for improvement. The 
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map specifically identifies learning trajectories in English language arts and mathematics 

beginning at a foundational level, with skills typically learned in infancy, and mapping that skill 

development through twelfth grade. In contrast to learning progressions sometimes used in 

diagnostic assessment, the use of a learning map better approximates cognitive skill acquisition 

by accommodating multiple and/or alternate pathways of learning or development.  

The current version of the learning map used as the foundation upon which the 

assessment is built consists of 1,852 nodes in English language arts and 2,395 nodes in 

mathematics. These nodes are linked by a total of 4,951 connections in English language arts and 

5,131 connections in mathematics. This study focuses on the English language arts portion of the 

learning map. A snapshot of the entire learning map is presented in Figure 1.  
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Figure 1. Nodes contained in the learning map 

  

Data  

According to preliminary diagnostic modeling analyses, convergence improves when 

sample size is greater than 100. Using a sample size of 100 as a threshold, a total of 532 English 

language arts testlets were included in the analysis. These testlets were administered to a total of 

22,733 students in grades three through twelve across seventeen participating states between the 

spring of 2014 and spring of 2015. Each testlet consisted of three to eight items, and resulted in 

the assessment of 1,744 English language arts items. Since items were administered within 

testlets, a testlet effect has been accounted for in the estimation. The complete set of items 
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assessed allowed for data collection on 214 English language arts nodes in the learning map. A 

snapshot of the ELA node networks is presented in Figure 2.  

 

 

Figure 2. Nodes network diagram 

 

Modeling 

As a first step in evaluating the complex structure of the learning map, students were 

assessed on items written to specific nodes. The Metropolis-Hastings algorithm, a Markov Chain 

Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability 

distribution, was employed. Bayesian Inference Networks were integrated to inform causal 

inferences using conditional probabilities of multiple observations. All map and item parameters 
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were added with uniform prior distribution; all student node parameters were supplied a prior 

distribution driven by map parameters, and all testlet effects had a prior of a normal distribution: 

𝛾𝛾𝑡𝑡 ∼ 𝑁𝑁�0,𝜎𝜎𝛾𝛾2� 

The preliminary modeling results indicate that the model fits better with testlet effect included 

DICtestlet = 476,106.7, whereas the DICno testlet = 518,952.1 when the testlet variance is not 

included. A lower number of DIC indicates that the model fits better and thus is preferred, 

whereby testlet effect is included in the modeling for this study. 

Since the mastery status of nodes is binary, either mastery or non-mastery; items are 

scored as binary, either answered correctly or incorrectly, the log-odds of a correct response 

conditional the values of its predictors were modeled. The log-odds is also called a logit:  

logit�𝑃𝑃�𝑌𝑌𝑠𝑠𝑠𝑠(𝑡𝑡) = 1�𝛼𝛼𝑠𝑠𝑛𝑛1 ,  𝛾𝛾𝑡𝑡�� = log𝑒𝑒 �
𝑃𝑃�𝑌𝑌𝑠𝑠𝑠𝑠(𝑡𝑡) = 1�𝛼𝛼𝑠𝑠𝑛𝑛1 , 𝛾𝛾𝑡𝑡�

1 − 𝑃𝑃�𝑌𝑌𝑠𝑠𝑠𝑠(𝑡𝑡) = 1�𝛼𝛼𝑠𝑠𝑛𝑛1 ,  𝛾𝛾𝑡𝑡�
� 

Here, n refers to node index, denoted as n1 for node 1 and n2 for node 2. Node status is assigned 

as 𝛼𝛼𝑠𝑠𝑛𝑛 R = 0 for non-masters and 𝛼𝛼𝑠𝑠𝑛𝑛 R = 1 for masters, with s as students. Testlet is denoted as t, 

and an item nested within a testlet as i(t). In this case, all items have dichotomous responses 

where 0 = incorrect and 1 = correct. The probability function can be derived by the inverse of the 

logit function. For instance, for a given item in the test measuring node 𝑎𝑎, the probability a 

student s provides a correct response to item i that is nested within testlet t is given by: 

𝑃𝑃�𝑌𝑌𝑠𝑠𝑠𝑠(𝑡𝑡) = 1�𝛼𝛼𝑠𝑠𝑛𝑛1 , 𝛾𝛾𝑡𝑡� =
exp�logit�𝑃𝑃�𝑌𝑌𝑠𝑠𝑠𝑠(𝑡𝑡) = 1�𝛼𝛼𝑠𝑠𝑛𝑛1 , 𝛾𝛾𝑡𝑡���

1 + exp�logit�𝑃𝑃�𝑌𝑌𝑠𝑠𝑠𝑠(𝑡𝑡) = 1�𝛼𝛼𝑠𝑠𝑛𝑛1 , 𝛾𝛾𝑡𝑡���
 

For items measuring more than one node, analogous parameters need to be added into the model. 

The above log-linear probability modeling can also be converted to an intercept-slope format: 

logit�𝑃𝑃�𝑌𝑌𝑠𝑠𝑠𝑠(𝑡𝑡) = 1�𝛼𝛼𝑠𝑠𝑛𝑛, 𝛾𝛾𝑡𝑡�� = 𝛾𝛾𝑡𝑡 + 𝜆𝜆𝑠𝑠(𝑡𝑡),0 + 𝜆𝜆𝑠𝑠(𝑡𝑡),1,𝑛𝑛𝛼𝛼𝑠𝑠𝑛𝑛 
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where 𝛼𝛼𝑠𝑠𝑠𝑠 is the mastery status of student 𝑠𝑠 on node 𝑎𝑎. 𝜆𝜆𝑠𝑠(𝑡𝑡),0 is the intercept, indicating the log-

odds of non-masters providing a correct response with a testlet of average difficulty. 𝜆𝜆𝑠𝑠(𝑡𝑡),1,𝑠𝑠 is 

the “main effect”, represents the difference in log-odds of correct response between masters and 

non-masters of node 𝑎𝑎. 𝛾𝛾𝑡𝑡 is the testlet random intercept, applies to all times within a given 

testlet 𝑡𝑡. The probability derived from the logit function can be written as: 

𝑃𝑃�𝑌𝑌𝑠𝑠𝑠𝑠(𝑡𝑡) = 1�𝜶𝜶𝑠𝑠, 𝛾𝛾𝑡𝑡� =
exp�𝛾𝛾𝑡𝑡 + 𝜆𝜆𝑠𝑠(𝑡𝑡),1,𝑠𝑠𝛼𝛼𝑠𝑠𝑠𝑠�

1 + exp�𝛾𝛾𝑡𝑡 + 𝜆𝜆𝑠𝑠(𝑡𝑡),1,𝑠𝑠𝛼𝛼𝑠𝑠𝑠𝑠�
 

As shown in the formulas, the item model combines the loglinear cognitive diagnosis 

model (LCDM; Henson, Templin, & Willse, 2009) with a bifactor testlet effect. The same 

modeling strategy applies to both nodes and items. For instance, for a node 𝛼𝛼𝑛𝑛2 predicting a node 

𝛼𝛼𝑛𝑛1, the function is:  

𝑃𝑃�𝛼𝛼𝑛𝑛2 = 1�𝛼𝛼𝑛𝑛1� =
exp�𝜇𝜇𝑛𝑛2,0 + 𝜇𝜇𝑛𝑛2,1,(𝑛𝑛1)𝛼𝛼𝑠𝑠𝑛𝑛1�

1 + exp�𝜇𝜇𝑛𝑛2,0 + 𝜇𝜇𝑛𝑛2,1,(𝑛𝑛1)𝛼𝛼𝑠𝑠𝑛𝑛1�
 

Where 𝜇𝜇𝑛𝑛2,0 denotes the intercept value of node 2, 𝜇𝜇𝑛𝑛2,1,(𝑛𝑛1) refers to the main effect of node 1 

and node 2, 𝛼𝛼𝑠𝑠𝑛𝑛1 indicates the mastery level of student s responding to node 1. As for node 𝛼𝛼𝑛𝑛1, 

not predicted by any nodes, the probability can be described as: 

𝑃𝑃�𝛼𝛼𝑛𝑛1 = 1� =
exp�𝜇𝜇𝑛𝑛1,0�

1 + exp�𝜇𝜇𝑛𝑛1,0�
 

 

Results and Discussion 

The Deviance Information Criterion (DIC) for model fit was 297047.8, and the 

convergence rate for nodes was 90%, which is promising. Node-to-node connections in the 

learning map were evaluated for evidence of reversals in causal inference. A reversal node is 
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present when non-masters of a parent node exhibit a high chance of being a master on 

subsequent child nodes based on map parameters. Node reversals are detected in the map when 

the intercept value of the successor node is greater than zero, which leads to a probability greater 

than .5. In our study, 52 child nodes out of 143 total child nodes are found to have intercept 

values greater than zero. Of those 15 included 0.0 in the credible interval, which left 37 out of 52 

child nodes, as displayed in Table 1. In the table, Logit is the log-odds of mastering the node. 

The Probability value is obtained by converting the logit to a bound of zero and one. The 

Heidelberger p-value is a convergence diagnostic statistic. The null hypothesis for the 

Heidelberger p-value is that the Markov chain is from a stationary distribution. A 5% chance the 

marginal posterior distribution will appear non-stationary is used as a threshold, as proposed by 

Heidelberger and Welch (1981; 1983). Therefore, a converged chain is desired, and a non-

significant p-value is preferred.  

The average probability of mastering the 37 child nodes is 0.79 (see Table 1), meaning 

that when the parent node is not mastered, the probability of mastering the child node is 0.79 on 

average. This indicates the probability of child node mastery is independent of the mastery status 

of the parent nodes. Conditional probability theory states a dependency exists between the 

children and the parent nodes, but in this case, the dependency does not hold.  Because each 

child node has a parent node, and the estimation of a child node is conditioned on the parent 

node, the flagging of a particular child node results in a “reversal” in the connected parent 

node(s). As such, the parent nodes connecting to those 37 child nodes can be flagged as reversal 

nodes, leaving 43 reversal nodes in total. 
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Table 1. Successor nodes with intercept values greater than zero 
Nodes Logit SD Probability Heidelberger 

P-value 
ELA.1136.Intercept.1. 3.02 1.38 0.95 0.06 
ELA.1147.Intercept.1. 1.44 0.18 0.81 0.17 
ELA.1175.Intercept.1. 1.64 0.84 0.84 0.06 
ELA.1239.Intercept.1. 0.52 0.15 0.63 1.00 
ELA.1246.Intercept.1. 1.17 0.30 0.76 0.71 
ELA.1248.Intercept.1. 2.12 0.99 0.89 0.15 
ELA.1276.Intercept.1. 0.44 0.27 0.61 0.42 
ELA.128.Intercept.1. 3.13 0.93 0.96 0.61 
ELA.1339.Intercept.1. 1.00 0.14 0.73 0.23 
ELA.1340.Intercept.1. 1.61 0.32 0.83 0.82 
ELA.1344.Intercept.1. 2.42 0.33 0.92 0.12 
ELA.1353.Intercept.1. 2.43 0.56 0.92 0.08 
ELA.1356.Intercept.1. 2.07 0.97 0.89 0.05 
ELA.1381.Intercept.1. 1.92 0.37 0.87 0.02* 

ELA.1382.Intercept.1. 0.48 0.14 0.62 0.08 
ELA.1416.Intercept.1. 2.72 0.40 0.94 0.02* 

ELA.1436.Intercept.1. 1.42 0.28 0.81 0.13 
ELA.1445.Intercept.1. 0.69 0.16 0.67 0.37 
ELA.1461.Intercept.1. 0.47 0.19 0.61 0.43 
ELA.1472.Intercept.1. 0.67 0.25 0.66 0.32 
ELA.1481.Intercept.1. 0.86 0.47 0.70 0.01* 

ELA.1493.Intercept.1. 0.76 0.24 0.68 0.16 
ELA.1546.Intercept.1. 8.54 2.70 1.00 0.10 
ELA.1550.Intercept.1. 1.27 0.42 0.78 0.97 
ELA.1801.Intercept.1. 0.75 0.63 0.68 0.13 
ELA.1913.Intercept.1. 1.72 0.31 0.85 0.96 
ELA.2109.Intercept.1. 0.89 0.22 0.71 0.31 
ELA.361.Intercept.1. 3.35 0.63 0.97 0.42 
ELA.362.Intercept.1. 0.57 0.22 0.64 0.78 
ELA.485.Intercept.1. 0.46 0.14 0.61 0.75 
ELA.489.Intercept.1. 1.67 0.31 0.84 0.92 
ELA.953.Intercept.1. 1.19 0.31 0.77 0.90 
ELA.971.Intercept.1. 3.33 1.21 0.97 0.89 
F.111.Intercept.1. 4.23 0.59 0.99 0.79 
F.114.Intercept.1. 0.53 0.22 0.63 0.28 
F.139.Intercept.1. 0.31 0.13 0.58 0.01* 

F.180.Intercept.1. 2.12 0.27 0.89 0.14 
*significance level p < .05 
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The probability of mastering the child node should increase given the mastery of the 

parent nodes, as ruled by conditional probability theory. The problem with the reversal nodes is 

that the probability of mastery of a child node is high even when a student hasn’t mastered the 

predicting node, which causes the connection and granularity of the nodes to be implausible.  

Take node ELA-1136 for instance. ELA-1136 is a child of two nodes: ELA-999 and node 

ELA-1141 (see Figure 3).  

 

Figure 3. Example of node connection 

From Table 1, the intercept value of ELA-1136 is greater than zero, and thus ELA-999 and ELA-

1141 are flagged as reversal nodes. The conditional probability of child node mastery depending 

on the parent node is presented in Table 2 as an illustration. The probability of mastery of node 

ELA-1136 is greater than .5, even with non-mastery of the parent node ELA-1141. Therefore, the 

connection between these two nodes is questionable, in that the causal inference is not sustained. 

In other words, mastery of node ELA-1141 does not necessarily have a causal effect on the 

likelihood of mastering ELA -1136.  

Table 2. Example of conditional node probability 
 ELA- 1136 

ELA - 1141 Master Non-Master 
Non-Master .96 .04 

Master .99 .01 
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Beyond investigating node connections for possible reversals, nodes could also 

potentially be overspecified. Over-specification would occur in instances where two nodes are 

not distinguishable from one another, or said another way, performance on the parent node 

perfectly predicts performance on the child node. Overspecified nodes are identified by having 

an intercept value less than -4, and a main effect value greater than 8. Among the 214 nodes with 

a sample size of at least 100, there were no overspecified nodes evident, meaning that all the 

examined nodes were reasonably distinct from their precursors, and did not need to be collapsed.  

In addition to node level estimation, item level examination is also critical in terms of 

informing test construction, scoring, quality control, and other features of test development. 

Statistically, good items are those with low intercept and/or high main effect values, whereas 

non-informative items are those with high intercept and/or low main effect values. That is to say 

items are expected to discriminate well between masters and non-masters of the node.  To flag 

non-informative items, we flag items with an intercept value greater than 1.0 and/or a main effect 

value less than 0.5. In this study, 305 out of 1,744 items were flagged for additional content 

expert review.  

To illustrate, take items measuring node ELA-1141 as an example. There were 68 items 

testing ELA-1141, one of which was flagged as non-informative items, as presented in Table 3. 

In theory, since ELA-1141 is the predicting node, mastery of the node should increase the 

probability of answering the item correctly. Moreover, the probability of answering the item 

correctly for masters of the node should be significantly higher than for non-masters of the node. 

As shown in Table 3, Item 21793 is flagged because the main effect value is smaller than .5, and 

thus the item is non-informative from a statistical sense. The probability of answering Item 
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21793 correctly with mastery of the node (probmastery = .76) is not significantly higher than that 

without mastery of the node (probnonmastery = .68).  

Table 3. Example of conditional item probability with predicting node ELA-1141 
Items Intercept Main effect Non-Master Master 

Correct Incorrect Correct Incorrect 
14208 -1.25 1.18 0.35 0.65 0.63 0.37 
14210 -0.24 1.34 0.59 0.41 0.85 0.15 
14212 -1.12 2.86 0.38 0.62 0.91 0.09 
14497 -2.79 3.35 0.18 0.82 0.86 0.14 
14498 -6.94 7.61 0.00 1.00 0.88 0.12 
14499 -13.97 15.08 0.00 1.00 0.92 0.08 
21790 0.26 1.89 0.67 0.33 0.93 0.07 
21791 0.83 142.34 0.79 0.21 1.00 0.00 
21793 0.30 0.38 0.68 0.32 0.76 0.24 
21815 -0.75 1.80 0.46 0.54 0.84 0.16 
21816 0.46 264.03 0.74 0.26 1.00 0.00 
21817 -0.24 24.50 0.58 0.42 1.00 0.00 

 

After items are flagged for review, the next step is for content experts to review the 

content of the items to determine what changes, if any, are needed to better assess the node. 

Decisions concerning the structure of the learning map should never be made on statistical 

evidence alone. Rather, statistical findings should be used as one tool for evaluating the structure 

of the learning map, taken into consideration with theoretical research regarding skill acquisition 

in the areas of English language arts, as well as expert judgments from content specialists on the 

order and size of learning targets. 

Once statistical evidence concerning recommendations for revisions to the map structure 

was compiled, content teams examined the evidence to make final judgments regarding revisions 

to the nodes and their connections, with statistical recommendations serving as just one piece of 

evidence in their final decision. Final content decisions about map structure were made based on 

converging evidence from multiple sources. Because the nodes and connections in the learning 
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map represent knowledge, skills and abilities that span from simple cognitive behaviors to 

complex evaluative tasks, statistical evidence provides one source of information for evaluating 

the structure of the map; however decisions must be considered in the context of the research that 

informed the original ordering of nodes and connections.  

In English language arts, one content-related consideration used to evaluate 

recommendations about map structure was the distinction between cognitive processes that 

underlie comprehension and the products of comprehension. Since the focus of dynamic 

assessments of emergent and conventional literacy are on the cognition that underlies 

comprehension, much of the research base that informed the original structure of the learning 

map was based on empirical studies that described both processes and products of 

comprehension as well as the cognitive behaviors that lead to emergent and conventional 

literacy. Zwaan and Singer (2003, p. 85) describe “online” methods that are used in text 

comprehension research to measure cognitive processes during reading rather than afterward. 

These “activation measures” are used to measure the availability of information to a reader as he 

or she comprehends a text. Since there are distinctions in the learning map between online 

processes and offline products of comprehension it is important to evaluate statistical 

information in light of the original intent of the node; does it represent a comprehension process 

or a product of comprehension? 

An additional consideration is the context of the assessment. It is difficult to measure a 

student’s ability to comprehend text without giving her a text to read. Traditional measures of 

reading comprehension rely on students reading a text, mentally representing the information in 

the text, and finally recalling relevant portions of the mental representation or rereading the text 

to find relevant information in response to questions. The assessment system uses multiple types 
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of passages to support assessment. Potential sources of item difficulty can, in some cases, be 

ascribed to variation in passage quality and complexity, which should be accounted for before 

making alterations to the structure of the learning map. 

 

Significance 

 The use of a learning map for dynamic assessment is based on the premise that the map 

itself, consisting of skills and pathways, is correct. Any errors in the specification of the map can 

distort the assessment of skill development and lead to misdiagnosis of student learning states. 

The research presented here functions as one source of validation the English language arts 

portion of the leaning map, The findings of this research provide statistical evidence of the 

correct specification of the learning map, and support the inferences to be made from student 

performance based on items measuring the nodes.  

Findings from studies such as this can also be used to support test development. Test 

developers are able to use the modeling results to inform the any future revisions of the learning 

map in order to ensure the best possible model of skill acquisition. Similarly, statistical evidence 

obtained from diagnostic modeling can also be used to make decisions about how content should 

be assessed as part of the assessment system. Test developers can evaluate which items and 

nodes are working well in the context of the map and which items and nodes tend to result in 

flags, thereby informing future development efforts.    

One limitation of the current research is that it only examined a portion of the English 

language arts part of the learning map. A similar study is needed in mathematics in order to 

support inferences being made regarding student skill acquisition. In addition, modeling 
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considerations should be given to areas of the map that may have a smaller sample size than the 

threshold of 100 used in this study.  

The research presented here expands on previous scholarly work in the area of diagnostic 

assessment. An algorithm of this scope and magnitude has not previously been documented in 

the literature. Research on diagnostic assessment typically includes a substantially smaller 

number of nodes and connections, with thirty to sixty nodes or attributes being at the high end. 

Because of the size and scale of the cognitive skills reflected in this dynamic assessment system, 

findings are likely to impact future modeling efforts and lead to further benefits to students and 

teachers in classrooms. 
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