ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP

SCIENCE: HIGH SCHOOL

SCI.EE.HS-LS1-2

<table>
<thead>
<tr>
<th>State Standard for General Education</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| HS-LS1-2 | EE.HS-LS1-2 Use a model to illustrate the organization and interaction of major organs into systems (e.g., circulatory, respiratory, digestive, sensory) in the body to provide specific functions | **Initial:** • Recognize that different organs have different functions
Precursor: • Identify which organs work for a specific function
Target: • Use a model to illustrate the organization and interaction of major organs into systems (e.g., circulatory, respiratory, digestive, sensory) in the body to provide specific functions |

A diagram showing the relationship of linkage levels in the mini-map appears below.

Key to map codes in upper right corner of linkage level boxes:

- I Initial
- P Precursor
- T Target

© 2018 The Dynamic Learning Maps Essential Elements and linkage levels are copyrighted by the University of Kansas Center for Research. Linkage levels are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information may not be altered by anyone without express written permission from the University of Kansas Center for Research.
Use a model to illustrate the organization and interaction of major organs into systems (e.g., circulatory, respiratory, digestive, sensory) in the body to provide specific functions.
State Standard for General Education

- HS-LS2-2: Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales

DLM Essential Element

- EE.HS-LS2-2: Use a graphical representation to explain the dependence of an animal population on other organisms for food and their environment for shelter

Linkage Levels

<table>
<thead>
<tr>
<th>Linkage Levels</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial:</td>
<td>Identify food and shelter needs for familiar wildlife</td>
</tr>
<tr>
<td>Precursor:</td>
<td>Recognize the relationship between population size and available resources for food and shelter from a graphical representation</td>
</tr>
<tr>
<td>Target:</td>
<td>Use a graphical representation to explain the dependence of an animal population on other organisms for food and their environment for shelter</td>
</tr>
</tbody>
</table>

A diagram showing the relationship of linkage levels in the mini-map appears below.

Key to map codes in upper right corner of linkage level boxes:

- I Initial
- P Precursor
- T Target

© 2018 The Dynamic Learning Maps Essential Elements and linkage levels are copyrighted by the University of Kansas Center for Research. Linkage levels are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information may not be altered by anyone without express written permission from the University of Kansas Center for Research.
Use a graphical representation to explain the dependence of an animal population on other organisms for food and their environment for shelter.
State Standard for General Education

HS-LS4-2
Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.

DLM Essential Element

EE.HS-LS4-2
Explain how the traits of particular species allow them to survive in their specific environments.

Linkage Levels

Initial:
- Match particular species to their various environments

Precursor:
- Identify factors in an environment that require special traits to survive

Target:
- Explain how the traits of particular species allow them to survive in their specific environments

Key to map codes in upper right corner of linkage level boxes:

- **I**: Initial
- **P**: Precursor
- **T**: Target

© 2018 The Dynamic Learning Maps Essential Elements and linkage levels are copyrighted by the University of Kansas Center for Research. Linkage levels are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of linkage levels in the mini-map appears below.
Explain how the traits of particular species allow them to survive in their specific environments.

Sci-72
Match particular species to their various environments.

Sci-71
Identify factors in an environment that require special traits to survive.

Sci-70
Explain how the traits of particular species allow them to survive in their specific environments.
<table>
<thead>
<tr>
<th>State Standard for General Education</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS-PS1-2</td>
<td>EE.HS-PS1-2</td>
<td></td>
</tr>
<tr>
<td>Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties</td>
<td>Make a claim supported by evidence to explain patterns of chemical properties that occur in a substance during a common chemical reaction (e.g., baking soda and vinegar)</td>
<td>Initial:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Recognize that a change has occurred during a chemical reaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Precursor:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Identify the changes that have occurred during a chemical reaction (e.g., metal-rust, paper-burn)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Target:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Make a claim supported by evidence to explain patterns of chemical properties that occur in a substance during a common chemical reaction (e.g., baking soda and vinegar)</td>
</tr>
</tbody>
</table>

A diagram showing the relationship of linkage levels in the mini-map appears below.

Key to map codes in upper right corner of linkage level boxes:

I Initial
P Precursor
T Target
Make a claim supported by evidence to explain patterns of chemical properties that occur in a substance during a common chemical reaction (e.g., baking soda and vinegar).
<table>
<thead>
<tr>
<th>State Standard for General Education</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS-PS2-3</td>
<td>EE.HS-PS2-3 Evaluate the effectiveness of safety devices and design a solution that could minimize the force of a collision</td>
<td>Initial:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Identify safety equipment devices that minimize force of a collision (e.g., floor mats, helmets, or steel-toed boots)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Precursor:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use data to compare the effectiveness of safety devices to determine which best minimizes the force of a collision</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Target:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Evaluate the effectiveness of safety devices and design a solution that could minimize the force of a collision</td>
</tr>
</tbody>
</table>

© 2018 The Dynamic Learning Maps Essential Elements and linkage levels are copyrighted by the University of Kansas Center for Research. Linkage levels are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of linkage levels in the mini-map appears below.

Key to map codes in upper right corner of linkage level boxes:

I Initial
P Precursor
T Target
Evaluate the effectiveness of safety devices and design a solution that could minimize the force of a collision.

Sci-60
Identify safety equipment devices that minimize force of a collision (e.g., floor mats, helmets, or steel-toed boots).

Sci-59
Use data to compare the effectiveness of safety devices to determine which best minimizes the force of a collision.

Sci-58
Evaluate the effectiveness of safety devices and design a solution that could minimize the force of a collision.
ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP

SCIENCE: HIGH SCHOOL

SCI.EE.HS-PS3-4

<table>
<thead>
<tr>
<th>State Standard for General Education</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| HS-PS3-4 Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system | EE.HS-PS3-4 Investigate and predict the temperatures of two liquids before and after combining to show uniform energy distribution | **Initial:**
- Compare relative difference in temperature (warmth, coldness) of two liquids

Precursor:
- Compare the temperatures of two liquids of different temperatures before and after combining

Target:
- Investigate and predict the temperatures of two liquids before and after combining to show uniform energy distribution

A diagram showing the relationship of linkage levels in the mini-map appears below.

Key to map codes in upper right corner of linkage level boxes:

- **I** Initial
- **P** Precursor
- **T** Target
SCI.EE.HS-PS3-4 Investigate and predict the temperatures of two liquids before and after combining to show uniform energy distribution.

Sci-57 Qualitatively compare the temperatures of two liquids.

Sci-56 Compare the temperatures of two liquids before and after combining.

Sci-55 Investigate and predict the temperatures of two liquids before and after combining.
<table>
<thead>
<tr>
<th>State Standard for General Education</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| HS-ESS1-4 Use mathematical or computational representations to predict the motion of orbiting objects in the solar system | EE.HS-ESS1-4 Use a model of Earth and the Sun to show how Earth’s tilt and orbit around the Sun cause changes in seasons | Initial:
 • Identify characteristics of the seasons
Precursor:
 • Use a model of Earth and sun to show how Earth’s positions in its orbit around the Sun correspond with the four seasons
Target:
 • Use a model of Earth and the Sun to show how Earth’s tilt and orbit around the Sun cause changes in seasons |

A diagram showing the relationship of linkage levels in the mini-map appears below.

Key to map codes in upper right corner of linkage level boxes:

I Initial
P Precursor
T Target

© 2018 The Dynamic Learning Maps Essential Elements and linkage levels are copyrighted by the University of Kansas Center for Research. Linkage levels are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information may not be altered by anyone without express written permission from the University of Kansas Center for Research.
SCI.EE.HS-ESS1-4 Use a model of Earth and the Sun to show how Earth's tilt and orbit around the Sun cause changes in seasons.

- **Sci-102** Identify characteristics of the seasons.
- **Sci-101** Use a model to show how the Earth's position corresponds with the four seasons.
- **Sci-100** Use a model to show how the Earth's tilt and orbit changes in seasons.
State Standard for General Education

Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios

DLM Essential Element

EE.HS-ESS3-2 Construct an argument for a strategy to conserve, recycle, or reuse resources

Linkage Levels

Initial:
- Recognize strategies to manage objects (e.g., dispose, repurpose, or recycle)

Precursor:
- Describe the factors that would favor one strategy to conserve, recycle, or reuse resources over another

Target:
- Construct an argument for a strategy to conserve, recycle, or reuse resources

Key to map codes in upper right corner of linkage level boxes:

- I Initial
- P Precursor
- T Target

© 2018 The Dynamic Learning Maps Essential Elements and linkage levels are copyrighted by the University of Kansas Center for Research. Linkage levels are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information may not be altered by anyone without express written permission from the University of Kansas Center for Research.
Construct an argument for a strategy to conserve, recycle, or reuse resources.

Sci-99
Recognize strategies to manage objects

Sci-98
Describe what would favor one strategy to conserve, recycle, or reuse resources.

Sci-97
Construct an argument for a strategy to conserve, recycle or reuse resources.
<table>
<thead>
<tr>
<th>State Standard for General Education</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| HS-ESS3-3
Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity | EE.HS-ESS3-3
Analyze data to determine the effects of a conservation strategy on the level of a natural resource | Initial:
- Gather data on the effects of a local (e.g., class or school-wide) conservation strategy
Precursor:
- Organize data on the effects of conservation strategies (e.g., using less energy, using rechargeable batteries, recycling or repurposing materials)
Target:
- Analyze data to determine the effects of a conservation strategy on the level of a natural resource |

© 2018 The Dynamic Learning Maps Essential Elements and linkage levels are copyrighted by the University of Kansas Center for Research. Linkage levels are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of linkage levels in the mini-map appears below.

Key to map codes in upper right corner of linkage level boxes:

- I Initial
- P Precursor
- T Target
Analyze data to determine the effects of a conservation strategy on the level of a natural resource.