

Mini-Map for M.EE.HS.A.SSE.4

Subject: Mathematics

Algebra—Seeing Structure in Expressions (A.SSE)

Grade: 11

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.A.SSE.4 Determine the successive term in a geometric	M.A.SSE.4 Derive the formula for the sum of a finite geometric
sequence given the common ratio.	series (when the common ratio is not 1), and use the formula to
	solve problems. For example, calculate mortgage payments.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Group together objects	Recognize patterns (i.e.,	Recognize a geometric	Communicate the next	Determine any term in
by attribute values such	repeating, growing,	sequence as an ordered	term in a geometric	a geometric sequence
as shape or size (e.g.,	shrinking) involving	list of numbers, such	sequence by	when the first term,
group together a	numbers or letters (e.g.,	that each term after the	determining how each	common ratio, and the
square, a rectangle, and	a, b, b, a, b, b; 2, 5, 8,	first is determined by	term in a sequence is	nth term formula of a
a rhombus, as they all	11). Identify a	multiplying or dividing	obtained from the	geometric sequence are
have four sides).	sequence as an ordered	the preceding term by a	previous term (e.g., the	given [e.g., given the
Contrast or distinguish	list of numbers that	constant amount (e.g.,	next term in the	n th term formula, a_n =
objects based on	adheres to a common	2, 4, 8, 16). Recognize	geometric sequence 2,	ar ⁽ⁿ⁻¹⁾ , first term as 2
attributes, such as	rule between	the recursive rule in	4, 8, 16 is 32).	and the common ratio
shape, size, texture, and	corresponding numbers	geometric sequences by		3, the 4th term will be 2
numerical pattern.	(e.g., 2, 4, 6, 8).	determining how each		$x 3^{(4-1)} = 2 \times 3^3 = 54$].
Order objects by		term in the sequence		
following a specific rule		differs from the		
(e.g., arrange three		preceding term (e.g.,		
objects with different		the recursive rule in the		
sizes from the smallest		sequence 2, 4, 8, 16 is		
to largest).		"multiply by 2").		

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?

In order to determine a geometric sequence (e.g., 2, 4, 8, 16, 32), students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "there are two cubes", "this is a circle", "this fidget is big and this fidget is small"), and the student observes, feels, or otherwise interacts with them. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different.

How is the Distal Precursor related to the Target?

As students develop their understanding of attributes and work toward geometric sequences, educators provide interactive lessons around patterns using attributes like shape, size, and color. At this level, students are also expected to recognize symbolic (e.g., number) patterns. This also requires that students recognize numerals in order (i.e., 1, 2, 3...). Educators should take care to use number names while defining and demonstrating symbolic sequences. While students do not need to say these words, they do need to learn the meanings and the sequence.

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

Link to Text-Only Map

M.EE.HS.A.SSE.4 Determine the successive term in a geometric sequence given the common ratio.

