

Mini-Map for M.EE.HS.A.SSE.1

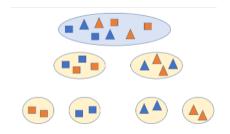
Subject: Mathematics

Algebra—Seeing Structure in Expressions (A.SSE)

Grade: 9

Learning Outcome

DLM Essential Element	Grade-Level Standard	
M.EE.HS.A.SSE.1 Identify an algebraic expression involving one	M.A.SSE.1 Interpret expressions that represent a quantity in	
arithmetic operation to represent a real-world problem.	terms of its context.	


Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Combine two or more	Represent addition,	Represent expressions	Represent real-world	Solve real-world
sets of objects or	subtraction,	using variables and	problems using	problems by
numbers to form a new	multiplication, or	numbers (e.g., express	expressions and	representing problems
set. Divide a set of 10 or	division word problems	subtract k from 12 as 12	equations.	using equations with
fewer objects into two	or models with	- k). Recognize that the		non-negative rational
or more distinct subsets	equations (e.g.,	unknown quantity in an		numbers.
(e.g., dividing a set	representing 6 marbles	equation is represented		
containing 10 objects	plus 2 marbles equal 8	using a symbol or letter		
into two subsets	marbles as 6 + 2 = 8	(e.g., 5 + b = 8).		
containing 4 and 6	marbles).			
objects).				

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?

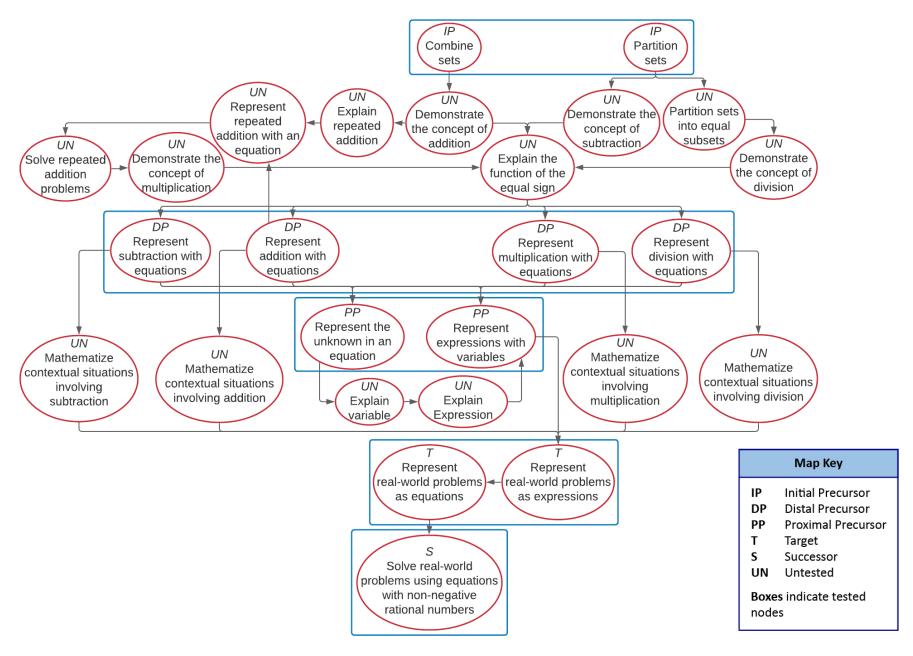
The knowledge needed to represent equations requires students to manipulate sets (i.e., combining and separating or partitioning). Provide students many opportunities to take a set of objects (e.g., tiles, linking cubes, buttons) and separate them based on a given characteristic (e.g., shape, color, size) into two distinct sets, then separate them again based on another characteristic. Guide students to notice how the set size changes each time you combine or partition the sets.

How is the Distal Precursor related to the Target?

As students begin to understand labeling and counting sets, they begin to use the number sequence and become more adept at tracking individual objects. Work on this skill using a variety of sets, labeling and counting the sets, and moving items in and out of the sets, labeling and counting the set again. Additionally, the educators will pair those sets with the symbolic representations for addition, subtraction, multiplication, and division (e.g., 3 + 2 = ?, $3 \times 2 = ?$).

Instructional Resources

Released Testlets


See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

See the document <u>Using Mini-Maps to Plan Instruction</u>.

Link to Text-Only Map

M.EE.HS.A.SSE.1 Identify an algebraic expression involving one arithmetic operation to represent a real-world problem.

