

Mini-Map for M.EE.HS.A.REI.10-12

Subject: Mathematics

Algebra—Reasoning with Equations and Inequalities (A.REI)

Grade: 10

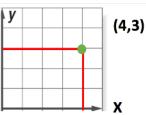
Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.A.REI.10-12 Interpret the meaning of a point on the graph of a line. For example, on a graph of pizza purchases, trace the graph to a point and tell the number of pizzas purchased and the total cost of the pizzas.	M.A.REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). M.A.REI.11 Explain why the <i>x</i> -coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the
	solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.
	M.A.REI.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Form a pair by	Communicate	Recognize covariation	Examine the shape of a	Find solutions to real-
arranging objects in	understanding that a	as the pattern in which	linear function graph to	world problems by
specific order (e.g.,	coordinate pair	two variables or	recognize the	interpreting linear
putting together a	(ordered pair) is a set of	quantities change	relationship between	function graphs.
pencil and a ruler,	numbers used to show	together. Recognize the	two varying quantities	
where the pencil is	a position on a graph.	direction in which two	(e.g., increasing,	
placed first and the	The first number, "x," or	variables change	decreasing, constant).	
	the x-coordinate in the	together (e.g., as x	Use the understanding	

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
ruler is placed next to	coordinate pair (x, y) ,	increases, y decreases).	of linear functions to	
it).	represents x units left	Describe the rate of	interpret the meaning	
	or right on the x-axis.	change in a function	of a point on a linear	
	The second number,	graph by quantifying	function graph [e.g., the	
	"y," or the y-coordinate,	covariation between	point (5, 2) might	
	represents y units up or	two variables (e.g., as x	represent that 5 people	
	down on the y-axis	increases by 2 units, y	need 2 medium-sized	
	[e.g., (4, 8) represents 4	decreases by 3 units).	pizzas].	
	units right on the x-axis			
	and 8 units up on the y-			
	axis].			


Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?

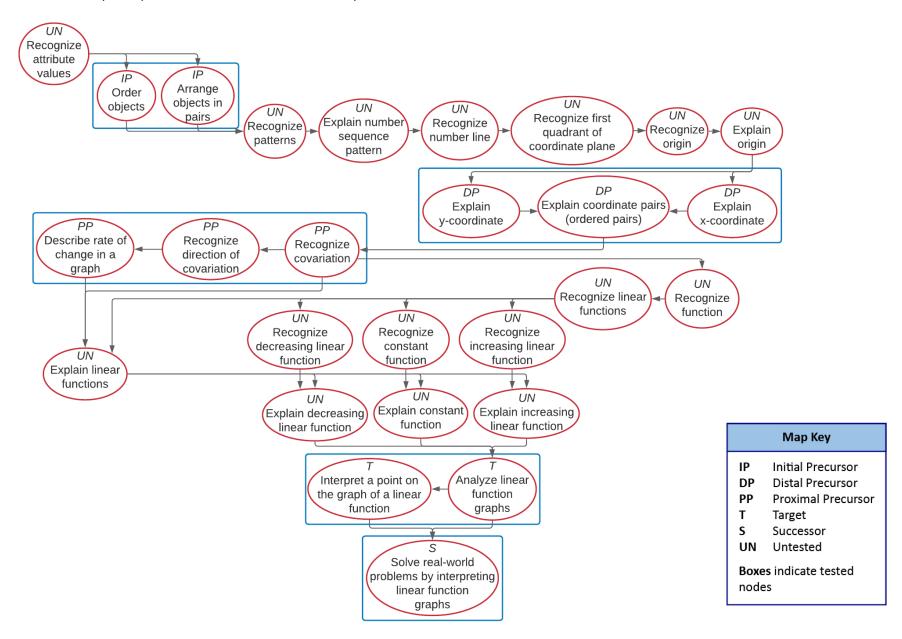
In order to analyze function graphs, students begin by learning to notice what is new. The educator draws the students attention to new objects or stimuli, labels them (e.g., "this set has all red objects; this set has all blue", "these fidgets are big; these fidgets are small"), and the student observes, feels, or otherwise interacts with them. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different. Educators provide sorting activities that allow learners to isolate specific attributes while recognizing likenesses and differences among objects. Educators also provide activities that reinforce the skill of ordering (e.g., arrangement of objects from largest to smallest, sequencing daily events, and counting).

How is the Distal Precursor related to the Target?

As students' attention to objects and details develops, educators can extend their attention by providing experience with finding and creating simple patterns using objects and moving to symbols (e.g., numerals). Educators should take care to start with simple patterns (e.g., 1-2-1-2) and take advantage of the symbols that are already being used in the classroom. Educators should demonstrate how students can create and identify the pattern/rule (e.g., using colored cubes, the student creates a line of 5 cubes; the educator then creates a matching set and explains what to do to follow the student's pattern. Then, the student generates a third matching set. If the order is not followed, it is a good teaching opportunity to talk about why it doesn't fit the pattern). Learning to identify the rule of patterns will help students extend their thinking across patterns. As students are working on identifying pattern rules, educators can also begin to demonstrate how rules can be used with ordered pairs. Provide students lots of opportunities to apply rules to create their own examples of ordered pairs. Educators should demonstrate how students can use their counting skills to figure out where to mark the point by counting how far along and how far up the x- and y-axes.

Instructional Resources

Released Testlets


See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

See the document <u>Using Mini-Maps to Plan Instruction</u>.

Link to Text-Only Map

M.EE.HS.A.REI.10-12 Interpret the meaning of a point on the graph of a line. For example, on a graph of pizza purchases, trace the graph to a point and tell the number of pizzas purchased and the total cost of the pizzas.

