<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| **M.G-CO.6** Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent; **M.G-CO.7** Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent; **M.G-CO.8** Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions | **M.EE.G-CO.6-8** Identify corresponding congruent and similar parts of shapes | **Initial Precursor**
- Recognize same
- Recognize different
Distal Precursor
- Match the same two-dimensional shape with different sizes and same orientation
- Match the same two-dimensional shape with same size and same orientation
- Match the same three-dimensional shapes with different size and same orientation
- Match the same three-dimensional shapes with same size and same orientation
Proximal Precursor
- Recognize congruent figures
- Recognize similar figures
Target
- Explain congruent figures
- Explain similar figures
Successor
- Explain the relationship between congruent figures and transformation
- Explain the relationship between similar figures and transformation |
How is the Initial Precursor related to the Target?

Initial Precursor: Recognizing congruent and similar parts of a shape requires a student to first recognize when basic objects and shapes are the same or different. Work on this understanding by providing students with a shape and naming it (e.g., “this is a square”). Then, provide multiple examples of the same shape so students can make comparisons, focusing student attention on the characteristics that make this a particular shape (e.g., a square has 4 sides that are the same size). As students explore shapes, label them and describe them as same or different.

NOTE: When presenting the same shape for comparison, do use shapes with different colors, textures, sizes, and orientation so that students understand the attribute that makes it that shape (e.g., 4 sides that are the same size).

How is the Distal Precursor related to the Target?

Distal Precursor: As students develop an understanding of same and different shapes, provide opportunities for students to match or group the same shapes based on the shape size (e.g., “this is a big square,” “this is a little square”). As students progress with identifying the size of shapes, the educator can begin to introduce different orientations of the shape as well as three-dimensional shapes.

NOTE: As new attributes (e.g., size, orientation, three-dimensional) are introduced, be sure to support the student in remembering that the attribute doesn’t change the name of the shape.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>Initial Precursor</td>
</tr>
<tr>
<td>DP</td>
<td>Distal Precursor</td>
</tr>
<tr>
<td>PP</td>
<td>Proximal Precursor</td>
</tr>
<tr>
<td>T</td>
<td>Target</td>
</tr>
<tr>
<td>SP</td>
<td>Supporting</td>
</tr>
<tr>
<td>S</td>
<td>Successor</td>
</tr>
<tr>
<td>UN</td>
<td>Untested</td>
</tr>
</tbody>
</table>

M.EE.G-CO.6-8 Identify corresponding congruent and similar parts of shapes.