

Mini-Map for M.EE.8.F.4 Subject: Mathematics Functions (F) Grade: 8

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.8.F.4 Determine the values or rule of a function using a	M.8.F.4 Construct a function to model a linear relationship
graph or a table.	between two quantities. Determine the rate of change and
	initial value of the function from a description of a relationship
	or from two (x, y) values, including reading these from a table
	or from a graph. Interpret the rate of change and initial value of
	a linear function in terms of the situation it models, and in
	terms of its graph or a table of values.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Form a pair of objects	Generate ordered pairs	Recognize covariation	Communicate	Communicate
by arranging two	by recognizing the	as the pattern in which	understanding of a	understanding of a
objects in a specific	pattern rules for each	two variables or	function rule from the	function as a set of
order (e.g., form a pair	coordinate and applying	quantities change	list of ordered pairs or a	ordered pairs or a line
by first placing a pencil	these rules to the x- and	together. Recognize the	graph by determining	on a graph where there
and then placing a	y-values [e.g., given (1,	direction in which two	how x- and y-values	exists a relationship
ruler).	3), (2, 5), (3, 7), the	variables change	change and relate to	between x- and y-
	next ordered pair would	together (e.g., describe	each other (e.g., the	coordinates, and there
	be (4, 9)]. Communicate	that as x increases, y	slope is 1/1 and each y-	are no two ordered
	the next term in a	decreases).	value is equal to x-value	pairs with the same
	growing or shrinking		+ 2, or <i>y</i> = <i>x</i> + 2).	input (x-value) and
	pattern, consisting of			different outputs (y-
	numerals or letters, by			value).
	recognizing the core			
	unit or the pattern rule			
	and applying it to the			

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	pattern (e.g., the			
	pattern rule in the			
	pattern: 3, 6, 9, 12 is			
	"add 3," so the next			
	term in the pattern is			
	12 + 3 equals 15).			

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target? In order to understand and work with function tables, students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "this set has all red objects; this set has all blue," "these fidgets are big; these fidgets are small") and the student observes, feels, or otherwise interacts with them. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different. Educators provide sorting activities that allow learners to isolate specific attributes while recognizing likenesses and differences among objects. Educators also provide activities that reinforce the skill of ordering (e.g., arrangement of objects from largest to smallest, sequencing daily events, and counting).

How is the Distal Precursor related to the Target? As student attention to objects and details develops, educators can extend their attention by providing experience with finding and creating simple patterns using objects and moving to symbols (e.g., numerals). Educators should take care to start with simple patterns (e.g., 1-2-1-2) and take advantage of the symbols that are already being used in the classroom. Educators should demonstrate how students can create and identify the pattern/rule (e.g., using colored cubes, the student creates a line of 5 cubes, the educator then creates a matching set and explains what to do to follow the student's pattern. Then, the student generates a third matching set. If the order is not followed, it is a good teaching opportunity to talk about why it doesn't fit the pattern). Learning to identify the rule of patterns will help students extend their thinking across patterns. As students work on identifying pattern rules, educators can also begin to demonstrate how rules can be used with ordered pairs (e.g., see example below). Provide students lots of opportunities to apply rules to create their own examples of ordered pairs.

Input	Rule	Output
5	+ 1	6
4	+1	5
7	+ 1	8
1	+ 1	

Input	Rule	Output
5	-2	3
4	-2	2
7	-2	
9	-2	7

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction

M.EE.8.F.4 Determine the values or rule of a function using a graph or a table.