M.EE.7.NS.3

Grade-Level Standard
M.7.NS.3 Solve real-world and mathematical problems involving the four operations with rational numbers

DLM Essential Element
M.EE.7.NS.3 Compare quantities represented as decimals in real world examples to tenths

Linkage Levels

Initial Precursor
- Recognize separateness
- Recognize set
- Recognize subset

Distal Precursor
- Recognize one tenth in a set model
- Recognize tenths in a set model

Proximal Precursor
- Represent a decimal to tenths as a fraction

Target
- Compare two decimals to tenths using symbols

Successor
- Compare two decimals to hundredths using symbols

© 2020 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.
How is the Initial Precursor related to the Target?

Initial Precursor: Adding fractions requires a student to be able to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. Educators present a set, label it (e.g., two balls, one marker, three CDs), count the items, label it again, and encourage students to use numerals to label and count the separate sets. Use tools like the ten-frame to point out whole and parts (e.g., a row of 5 dots and a row of 4 dots are parts or subsets of 9).

![Diagram of two sets of dots]

How is the Distal Precursor related to the Target?

Distal Precursor: As students begin to understand labeling, counting small sets, and recognizing wholes and parts of objects and sets, use set models to provide a wide variety of sets of 10 to model tenths (e.g., individual shapes to match the fraction: “I have 10 cubes in my bag, 1/10 of them are blue”).

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>Initial Precursor</td>
</tr>
<tr>
<td>DP</td>
<td>Distal Precursor</td>
</tr>
<tr>
<td>PP</td>
<td>Proximal Precursor</td>
</tr>
<tr>
<td>T</td>
<td>Target</td>
</tr>
<tr>
<td>SP</td>
<td>Supporting</td>
</tr>
<tr>
<td>S</td>
<td>Successor</td>
</tr>
<tr>
<td>UN</td>
<td>Untested</td>
</tr>
</tbody>
</table>

![Mini-map diagram with node connections]
M.EE.7.NS.3 Compare quantities represented as decimals in real world problems to tenths