

Mini-Map for M.EE.6.NS.1

Subject: Mathematics
The Number System (NS)

Grade: 6

Learning Outcome

DLM Essential Element	Grade-Level Standard	
M.EE.6.NS.1 Compare the relationships between two unit	M.6.NS.1 Interpret and compute quotients of fractions, and	
fractions.	solve word problems involving division of fractions by fractions	
	(e.g., by using visual fraction models and equations to represent	
	the problem).	

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Recognize two glasses	Recognize a fraction as	Communicate	Communicate
understanding of a unit	with an equal amount	a number expressed as	understanding that	understanding that the
by recognizing a group	of liquid. Divide familiar	a quotient of two	when a whole is divided	numerator represents a
of countable objects.	shapes, such as circles,	integers in the form	into more parts, each	number of equal parts
Communicate	squares, and/or	a/b, with b not equal to	part is smaller than	and the denominator
understanding of	rectangles, into two or	zero. Demonstrate	when that same whole	represents how many
"wholeness" by	more equal parts.	understanding of a unit	is divided into fewer	equal parts make up the
recognizing an object		fraction (e.g., 1/4) as	parts (e.g., 1/5 is	whole. Compare
that has all the parts		the quantity formed by	smaller than 1/2	fractions (i.e., which
joined together.		one part when a whole	because in 1/5 the	fraction is greater than
Recognize parts of an		is partitioned into <i>n</i>	whole is divided into	and which is less than)
object and the whole		(e.g., 4) equal parts.	five equal parts and in	using manipulatives.
object.		Recognize the number	1/2 the same whole is	Add fractions with
		above the fraction bar	divided into two equal	common denominators
		as the numerator and	parts).	(e.g., 2/5 + 1/5 = 3/5),
		the number below the		and decompose
		fraction bar as the		fractions into sums of
		denominator.		unit fractions with the
				same denominator

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
				(e.g., 3/7 = 1/7 + 1/7 +
				1/7).

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?

In order to compare unit fractions, students need to gain experience with parts and wholes. This concept can literally be taught in every area of mathmatics (i.e., sets, number sense, counting, operations, patterns, measurement, data analysis, geometry, and algebra). Educators can start by having students work with sets, taking whole sets and breaking them into parts based on attributes. When counting, label what has been counted (e.g., two balls, one marker, three CDs), count the items, label it again, and encourage students to use numerals to label and count the separate sets. Use tools like the ten-frame to point out whole and parts (e.g., a row of 5 dots and a row of 4 dots are parts or subsets of 9).

How is the Distal Precursor related to the Target?

As students begin to develop the understanding of sets and numbers, educators will highlight the differences between sets on the basis of overall area or discrete number using the words more, less, and equal. Provide students with multiple opportunities to count and compare a wide variety of sets with an increasing number of items, label the set (e.g., eight ball, 12 bears, 15 blocks), and move items in and out of the sets, labeling and counting them again (e.g., "You just said this set has 11 cubes; if I take two cubes, how many will you have?").

Being able to partition shapes requires a student to recognize a unit and recognize when basic objects are in whole and part forms. Work on this understanding by giving students an opportunity to observe, feel, or otherwise interact with objects and shapes in their whole and part forms. The general goal is to explore the differences between whole units or objects and parts of units or objects. As students explore shapes, label them and describe them as whole or part. Have students build (construct) and take apart (deconstruct) shapes.

Instructional Resources

Released Testlets

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

See the document <u>Using Mini-Maps to Plan Instruction</u>.

Link to Text-Only Map

Recognize parts of a Recognize Recognize given whole wholeness a unit or a unit DP DP Partition any Model equal shape into part equal parts PP PP PP Recognize Recognize Recognize numerator fraction denominator PP Explain unit fraction Explain relationships between unit fractions Decompose a S S S fraction into a sum Add fractions Compare Explain Explain of unit fractions with with common fractions using numerator denominator the same denominators models denominator

Map Key

Initial Precursor

Distal Precursor

Target

Successor

Untested

Boxes indicate tested

Proximal Precursor

IΡ

DP PP

Τ

S

nodes

M.EE.6.NS.1 Compare the relationships between two unit fractions.