

Mini-Map for M.EE.5.NBT.5

Subject: Mathematics

Number and Operations in Base Ten (NBT)

Grade: 5

Learning Outcome

DLM Essential Element	Grade-Level Standard	
M.EE.5.NBT.5 Multiply whole numbers up to 5×5 .	M.5.NBT.5 Fluently multiply multi-digit whole numbers using	
	the standard algorithm.	

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Communicate	Demonstrate	Multiply numbers up to	Communicate
understanding of	understanding that in	multiplication by	12 by factors 1 to 5,	understanding of
"separateness" by	repeated addition	combining multiple sets	using manipulatives or	multiplication as the
recognizing objects that	problems, a single	containing the same	repeated addition (e.g.,	number of groups times
are not joined together.	numerical value is	number of objects.	multiply 3 x 5 by adding	the number of objects
Communicate	added repeatedly (e.g.,	Communicate	5 + 5 + 5 = 15).	in each group (with the
understanding of set by	6 + 6 + 6) and that one	understanding that the		understanding that
recognizing a group of	way to add a number a	number of sets times		each group contains an
objects sharing an	given number of times	the number of objects		equal number of
attribute. Communicate	is by using skip-counting	in each set equals the		objects) and that the
understanding of a	as a strategy (e.g., 6 + 6	total number of objects.		total number of objects
subset by recognizing a	+ 6 can be added as 6,			(i.e., the product) can
subset as a set or group	12, 18). Represent			then be divided by the
of objects within a	repeated addition 12,			number of groups to
larger set that share an	18). Represent repeated			equal the number of
attribute.	addition problems using			objects in each group,
	an equation showing			and vice versa.
	the addition of the			

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	same numeral the			
	required number of			
	times, and find the			
	correct sum using an			
	addition strategy (e.g., 5			
	+ 5 + 5 = 15).			

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?

In order to understand multiplication, students must learn to organize items into groups/sets based on a common characteristic such as size, color, shape, texture, or flavor. Students learn how to sort items by separating a group of items into two groups (e.g., vehicles and animals). As students gain comfort sorting items into sets, they are encouraged to use their language to convey their thought process by identifying and naming the characteristic that determines the set (e.g., wheels, legs). Activities that require students to engage actively with the items will foster the students' understanding of set, subsets, and separateness (e.g., the game "concentration" where the cards highlight one characteristic in a group of similar cards [e.g., shape]; incorporating creating sets into everyday activities [e.g., during independent reading, the teacher gives a student a pile of books and asks them to create two sets, then helps the student determine the criteria they want to use to sort them, such as books I want to read/books I don't want to read; bugs/dogs; sports/gaming]).

How is the Distal Precursor related to the Target?

As students gain an understanding of how to group items into sets, educators will begin to help students connect their knowledge of sets with their knowledge of counting and addition. Educators will provide multiple experiences counting sets and combining sets using multiple models. As student understanding progresses, educators will provide experience with multiple (3-4) small sets, and students will use repeated addition to find the total. They can check their work by counting the individual items in each group. Educators should take care to use words like "some," "all," "put," and "add" while defining and demonstrating their meaning. While students do not need to say these words, they do need to learn the meanings.

Instructional Resources

Released Testlets

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

M.EE.5.NBT.5 Multiply whole numbers up to 5×5 .

