Essential Element, Linkage Levels, and Mini-Map

Math: Grade 4

M.EE.4.OA.1-2

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| **M.4.OA.1** Interpret a multiplication equation as a comparison, e.g., interpret $35 = 5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations; **M.4.OA.2** Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison | **M.EE. 4. OA.1-2** Demonstrate the connection between repeated addition and multiplication | **Initial Precursor:**
- Recognize subset
- Recognize set
- Recognize separateness

Distal Precursor:
- Demonstrate the concept of addition
- Combine sets
- Combine

Proximal Precursor:
- Represent repeated addition with an equation
- Represent repeated addition with a model

Target:
- Demonstrate the concept of multiplication

Successor:
- Multiply by 5
- Multiply by 4
- Multiply by 3
- Multiply by 2
- Multiply by 1

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.
A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- **IP** Initial Precursor
- **SP** Supporting
- **DP** Distal Precursor
- **S** Successor
- **PP** Proximal Precursor
- **UN** Untested
- **T** Target

M.EE.4.OA.1-2 Demonstrate the connection between repeated addition and multiplication