

Mini-Map for M.EE.3.OA.9

Subject: Mathematics Operations and Algebraic Thinking (OA) Grade: 3

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.3.OA.9 Identify arithmetic patterns.	M.3.OA.9 Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize "same" as	Arrange objects in a	Recognize that patterns	Recognize the pattern	Determine the pattern
the object that shares	specific order by	(or cycles) exist in	that either repeats or	rule in a repeating,
all of the same	following a specific rule	nature or in everyday	grows when shown	growing, or shrinking
attributes as other	(e.g., arrange objects	life.	different patterns	pattern by finding how
objects in a group.	from the largest to the		involving numbers,	a term in the pattern is
Recognize "different" as	smallest size). Group		letters, symbols, or	obtained from a
the object that shares	like items by attributes		shapes (e.g., 1, 1, 2, 1,	previous term (e.g., in
some or none of the	such as size, shape, and		1, 2, 1, 1, 2, or 2, 4, 6,	the pattern 1, 3, 5, 7,
attributes as other	color. Contrast or		8).	each term is obtained
objects in a group.	distinguish objects			from the previous term
	based on attributes			by adding 2, which
	such as shape, size,			implies that the pattern
	texture, and numerical			rule is "add 2"). Apply a
	pattern.			given pattern rule to
				find the next term in a
				pattern.

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target? Recognizing patterns is an important building block to many mathematical concepts and skills such as skip counting, repeated addition, and multiplication. In order to build toward arithmetic patterns, students need to engage in activities that compare at least two items. Calling attention to both how they are the same and how they are different. This type of instruction should include but may not be limited to quantities, shapes, and attributes across the school day so students have many opportunities to experience same and different. How is the Distal Precursor related to the Target? Building on same and different, educators can use some of the other mathematical concepts like working with sets or recognizing a whole and parts to help students identify same and different. For instance, students may create a set and then create a second set that has the same amount. Then, they can change one of the sets to make it different. As students are learning to create and identify sets that are same and different, educators can draw student attention to the various attributes of an object to teach students to order, classify, and contrast the objects. These understandings will then lead to students having the attentional skills to begin recognizing patterns.

Instructional Resources

Released Testlets

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

Link to Text-Only Map

