

Mini-Map for M.EE.3.OA.1-2

Subject: Mathematics Operations and Algebraic Thinking (OA) Grade: 3

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.3.OA.1-2 Use repeated addition to find the total number	M.3.OA.1 Interpret products of whole numbers, e.g., interpret
of objects and determine the sum.	5 × 7 as the total number of objects in 5 groups of 7 objects
	each. For example, describe a context in which a total number
	of objects can be expressed as 5×7 .
	M.3.OA.2 Interpret whole-number quotients of whole numbers,
	e.g., interpret 56 ÷ 8 as the number of objects in each share
	when 56 objects are partitioned equally into 8 shares, or as a
	number of shares when 56 objects are partitioned into equal
	shares of 8 objects each.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Combine two or more	Use models, such as	Solve repeated addition	Demonstrate
understanding of	sets, containing objects,	mathematical equations	problems by	multiplication by
"separateness" by	to form a new set.	(e.g., 5 + 5 + 5 = 15),	representing the	combining multiple sets
recognizing objects that	Combine two parts	sets of manipulatives,	problem using an	containing the same
are not joined together.	(e.g., blocks, toys, or	or number line	equation and finding	number of objects.
Communicate	shapes) to form a new	diagrams to represent a	the sum using an	Communicate
understanding of set by	whole. Demonstrate	repeated addition	addition strategy, such	understanding that the
recognizing a group of	addition by combining	problem.	as skip counting.	number of sets times
objects sharing an	the objects belonging to			the number of objects
attribute. Communicate	two or more sets, and			in each set equals the
understanding of a	communicate that the			total number of objects.
subset by recognizing a	total number of objects			
subset as a set or group	in the new set is called			
of objects within a	the sum.			

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
larger set that share an				
attribute.				

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target? In order to use repeated addition to solve problems, students must first learn to organize items into groups/sets based on a common characteristic such as size, color, shape, texture, or flavor. Students learn how to sort items by separating a group of items into two groups (e.g., vehicles and animals). As students gain comfort sorting items into sets, they are encouraged to use their language to convey their thought process by identifying and naming the characteristic that determines the set (e.g., wheels and legs). Activities that require students to engage actively with the items will foster the students' understanding of set, subsets, and separateness (e.g., the game "one of these things is not like the other"; highlighting one characteristic in a group of similar items [e.g., color] by which the items will be grouped; incorporating creating sets into everyday activities [e.g., during clean up time students place items into one of two bins based on a designated characteristic]).

Instructional Resources

Released Testlets
See the Guide to Practice Activities and Released Testlets.
Using Untested (UN) Nodes

How is the Distal Precursor related to the Target? As students gain an understanding of how to group items into sets, educators will begin to help students connect their knowledge of sets with their knowledge of counting. Educators will provide multiple experiences counting sets and combining sets using multiple models. The following are examples of models.

Link to Text-Only Map

	Мар Кеу
IP	Initial Precursor
DP	Distal Precursor
PP	Proximal Precursor
т	Target
S	Successor
UN	Untested
Boxes indicate tested nodes	