Grade-Level Standard	**DLM Essential Element**	**Linkage Levels**
M.3.NBT.3 Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., 9 x 80, 5 x 60) using strategies based on place value and properties of operations | M.EE.3.NBT.3 Count by tens using models such as objects, base ten blocks, or money | **Initial Precursor**
- Recognize before
- Recognize after
Distal Precursor
- Explain number sequence pattern
Proximal Precursor
- Rote count to 30
- Count to 30
Target
- Skip count by 10s
Successor
- Skip count by 10s starting at a multiple of 10
- Count with dimes
- Count with 10 dollar bills
- Explain repeated addition
How is the Initial Precursor related to the Target?

Initial Precursor: In order to fully understand the number sequence and skip counting, students begin by counting objects in a one-to-one fashion. Then, students use small collections to make comparisons (e.g., 3 items is more than 2 items because you have to count further). Once students can count at least 3 items, educators begin introducing the positional words before and after. A powerful way to teach these concepts is to incorporate them into daily routines. For example, lining classmates up to go somewhere, lining up familiar items, following a schedule, and using the words “before” and “after” to describe the relative location of the people, objects, and events. During math, educators will describe the location and the characteristic of the item being discussed (e.g., the square comes before the circle; number 2 is after number 1; in this pattern, blue is before red).

How is the Distal Precursor related to the Target?

Distal Precursor: Students will continue to build their familiarity with the counting sequence enabling them to have number-before and number-after knowledge (e.g., when asked “What comes after 5?” the student is able to indicate 6 without having to count up from 1; however, they still may use the count sequence to get a running start: 4, 5, 6). Educators provide students with many opportunities to make close comparisons utilizing models (e.g., ten-frame, number line, sets) so they have a visual or tactual way to compare small collections (e.g., Which is more? 7 or 8; 3 or 4; 9 or 10). The models help students see that two is one more than one, and three is one more than two. This will help them build the concept that each number in the count sequence is one more than the previous number.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>Initial Precursor</td>
</tr>
<tr>
<td>DP</td>
<td>Distal Precursor</td>
</tr>
<tr>
<td>PP</td>
<td>Proximal Precursor</td>
</tr>
<tr>
<td>SP</td>
<td>Supporting</td>
</tr>
<tr>
<td>S</td>
<td>Successor</td>
</tr>
<tr>
<td>UN</td>
<td>Untested</td>
</tr>
<tr>
<td>T</td>
<td>Target</td>
</tr>
</tbody>
</table>
M.EE.3.NBT.3 Count by tens using models such as objects, base ten blocks, or money.