

Mini-Map for M.EE.HS.N.CN.2.a

Subject: Mathematics Number and Quantity—The Complex Number System (N.CN) Grade: 9

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.N.CN.2.a Use the commutative, associative, and	M.N.CN.2.a Use the relation $i^2 = -1$ and the commutative,
distributive properties to add, subtract, and multiply whole	associative, and distributive properties to add, subtract, and
numbers.	multiply complex numbers.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Combine two or more	Multiply numbers up to	Apply commutative	Communicate
understanding of	sets to create a new set.	12 by factors 1 to 5 and	(e.g., 3 + 4 = 4 + 3) and	understanding that the
"separateness" by	Combine two shapes to	10, using manipulatives	associative [e.g., (2 + 3)	sum of three or more
recognizing objects that	create a new	or repeated addition.	+ 5 = (2 + 3) + 5]	numbers is the same
are not joined together.	whole/shape. Solve	Add two numbers with	properties of addition	regardless of the
Communicate	repeated addition	a sum within 20 using	to add two or more	grouping or order of
understanding of set by	problems by adding the	objects, drawings,	numbers. Apply	addends, the product of
recognizing a group of	same number multiple	counters, or a	commutative (e.g., 3 × 4	three or more numbers
objects sharing an	times and determining	mathematical equation,	= 4 × 3), associative	is the same regardless
attribute. Communicate	the sum. Demonstrate	and communicate the	[e.g., (10 × 4) × 2 = 10 ×	of the grouping or order
understanding of a	addition by putting	sum by combining both	(4 × 2)], and distributive	of factors, and
subset by recognizing a	together objects from	the numbers.	properties [e.g., 10 × (4	multiplying a sum or
subset as a set or group	two sets to create a		$(+ 2) = (10 \times 4) + (10 \times 2)$	difference by a given
of objects within a	new set. Demonstrate		of multiplication as	number yields the same
larger set that share an	multiplication by		strategies to multiply	result as multiplying
attribute.	arranging objects into		two or more numbers.	each addend by the
	two or more equal			number and then sum
	groups and			or difference.
	communicating that the			
	number of groups times			

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	the number of objects			
	in each group equals			
	the total number of			
	objects.			

How is the Initial Precursor related to the Target? Using the properties of addition and multiplication requires a student to be able to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. The educator presents a set, labels it (e.g., two balls, one marker, three CDs), counts the items, labels it again, and encourages students to use numerals to label and count the separate sets. Use tools like the ten-frame to point out whole and parts (e.g., a row of 5 dots and a row of 4 dots are parts or subsets of 9).

How is the Distal Precursor related to the Target? As students' understanding of labeling and counting sets develops, they will begin working on adding items to a set and combining sets to create a new set. Additionally, students will work on developing an understanding of equal shares by actively participating in one-to-one distribution of objects to person (e.g., giving each person in the group two pencils), objects to objects (e.g., given four counters, students line up four more counters in front of or on top of the first set), and objects to available space (e.g., given three chairs at a table, the student places a cup on the table for each available chair).

Instructional Resources

Released Testlets See the <u>Guide to Practice Activities and Released Testlets</u>. Using Untested (UN) Nodes See the document Using Mini-Maps to Plan Instruction.

M.EE.HS.N.CN.2.a Use the commutative, associative, and distributive properties to add, subtract, and multiply whole numbers.

Mini-Map for M.EE.HS.N.CN.2.b

Subject: Mathematics Number and Quantity—The Complex Number System (N.CN) Grade: 9

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.N.CN.2.b Solve real-world problems involving addition and subtraction of decimals, using models when needed.	M.N.CN.2.b Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Recognize a unit as a	Add and subtract two	Solve real-world	Solve multi-step real-
understanding of	group of countable	rational numbers, each	problems involving	world and
"separateness" by	objects. Recognize ten	with a digit in the	addition and	mathematical problems
recognizing objects that	as a group of 10	tenths places (e.g.,	subtraction of rational	involving rational
are not joined together.	individual objects or 10	subtracting 4.5 from	numbers with digits to	numbers with digits to
Communicate	ones. Communicate	8.2).	the hundredths place	the hundredths place.
understanding of set by	understanding that the		(e.g., John has \$2.50.	
recognizing a group of	digit in the tens place is		Sara gives him \$1.50	
objects sharing an	formed by grouping		more. How much	
attribute.	objects by 10s and the		money does John have	
	digit in the ones place is		now?).	
	composed of individual			
	objects.			

How is the Initial Precursor related to the Target? Adding and subtracting rational numbers requires a student to be able to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. The educator presents a set, labels it (e.g., two balls, one marker, three CDs), counts the items, labels it again, and encourages students to use numerals to label and count the separate sets.

How is the Distal Precursor related to the Target?

As students' understanding of numbers develops, they will work with numbers greater than nine (two-digit numbers). Use tools to create tactual and visual models of tens and ones (e.g., tenframes, connecting cubes, bundling sticks). Educators will describe these numbers as __ groups of ten and __ ones. (e.g., 13 is 1 group of ten and 3 ones).

Instructional Resources

M.EE.HS.N.CN.2.b Solve real-world problems involving addition and subtraction of decimals, using models when needed.

Mini-Map for M.EE.HS.N.CN.2.c

Subject: Mathematics Number and Quantity—The Complex Number System (N.CN) Grade: 9

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.N.CN.2.c Solve real-world problems involving	M.N.CN.2.c Use the relation $i^2 = -1$ and the commutative,
multiplication of decimals and whole numbers, using models	associative, and distributive properties to add, subtract, and
when needed.	multiply complex numbers.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize separateness	Recognize a unit as a	Multiply two rational	Solve word problems	Solve multi-step real-
as objects that are not	group of countable	numbers, each with	involving multiplication	world and
joined together.	objects. Recognize ten	digits up to the tenth	of rational numbers,	mathematical problems
	as a group of 10	place and limiting the	limiting the factors and	involving multiplication
	individual objects or 1	product to answers	products to whole	of rational numbers,
	ten. Communicate	with tenths, ones, or	numbers and decimals	limiting the factors and
	understanding that the	tens (e.g., multiplying	to the hundredths.	products to whole
	digit in the tens place is	2.5 by 4.0).		numbers and decimals
	formed by grouping			to the hundredths (e.g.,
	objects by 10s and the			Miguel earns \$8.75
	digit in the ones place is			each day for 5 days. He
	composed of individual			spends \$18.80 on a
	objects.			game. How much
				money does Miguel
				have left?).

How is the Initial Precursor related to the Target? Solving multiplication problems with or without decimals requires a student to be able to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. The educator presents a set, labels it (e.g., two balls, one marker, three CDs), counts the items, labels it again, and encourages students to use numerals to label and count the separate sets.

How is the Distal Precursor related to the Target?

As students' understanding of number develops, they will work with numbers greater than nine (two-digit numbers). Use tools to create tactual and visual models of tens and ones (e.g., tenframes, connecting cubes, bundling sticks). Educators will describe these numbers as __ groups of ten and __ ones. (e.g., 13 is 1 group of ten and 3 ones).

•	•	•	•	•)	•		
٠	•	•	٠	•				
		1)				3	Ĵ

Instructional Resources

M.EE.HS.N.CN.2.c Solve real-world problems involving multiplication of decimals and whole numbers, using models when needed.

Mini-Map for M.EE.HS.N.RN.1

Subject: Mathematics Number and Quantity—The Real Number System (N.RN) Grade: 11

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.N.RN.1 Determine the value of a quantity that is squared or cubed.	M.N.RN.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1/3}$ to be the cube root of 5 because we want $(5^{1/3})^3 = 5^{(1/3)3}$ to hold, so $(5^{1/3})^3$ must equal 5.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Combine two or more	Communicate	Demonstrate	Determine the value of	Communicate
sets of objects to create	understanding that in	multiplication by	a whole number	understanding that a
a new set. Combine two	repeated addition	combining multiple sets	exponent expression	perfect square is the
or more parts (e.g.,	problems, a single	containing the same	(e.g., 4 ² = 16).	product of two equal
toys, shapes) to form a	numerical value is	number of objects.		factors (e.g., 6 x 6) and
new whole.	added repeatedly (e.g.,	Communicate		that a perfect cube is
Demonstrate an	6 + 6 + 6) and that one	understanding that the		the product of three
understanding of	way to add a number a	number of sets times		equal factors (e.g., 7 x 7
addition by combining	given number of times	the number of objects		x 7).
the objects of two or	is by using skip-counting	in each set equals the		
more sets.	as a strategy (e.g., 6 + 6	total number of objects.		
	+ 6 can be added as 6,	Communicate		
	12, 18). Represent	understanding that in		
	repeated addition	multiplication, one		
	problems using an	factor represents the		
	equation showing the	number of elements in		

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	addition of the same	a group, the second		
	numeral the required	factor represents the		
	number of times, and	number of groups, and		
	find the correct sum	the product is the		
	using an addition	number obtained by		
	strategy (e.g., 5 + 5 + 5	multiplying two factors.		
	= 15).			

How is the Initial Precursor related to the Target? Determining the value of a quantity that is squared or cubed requires a student to count small amounts, recognizing that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. The educator presents a set, labels it (e.g., two balls, one marker, three CDs), counts the items, labels it again, and encourages students to use numbers to label and count the separate sets. The general goal is to explore how the set changes when items are combined.

How is the Distal Precursor related to the Target? As students gain an understanding of how to group items into sets, educators will begin to help students connect their knowledge of sets with their knowledge of counting and addition. Educators will provide multiple experiences counting sets and combining sets using multiple models. As student understanding progresses, educators provide experience with multiple small sets, and students will use repeated addition to find the total. They can check their work by counting the individual items in each group. Educators should take care to use words like "some," "all," "put," and "add" while defining and demonstrating their meaning. While students do not need to say these words, they do need to learn the meanings.

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

M.EE.HS.N.RN.1 Determine the value of a quantity that is squared or cubed.

	Мар Кеу			
IP	Initial Precursor			
DP	Distal Precursor			
PP	Proximal Precursor			
Т	Target			
S	Successor			
UN	Untested			
Boxes indicate tested nodes				

Mini-Map for M.EE.HS.S.CP.1-5

Subject: Mathematics Statistics and Probability—Conditional Probability and the Rules of Probability (S.CP) Grade: 10

Learning Outcome

DLM Essential Element	Grade-Level Standard
	M.S.CP.1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). M.S.CP.2 Understand that two events <i>A</i> and <i>B</i> are independent if the probability of <i>A</i> and <i>B</i> occurring together is the product of their probabilities, and use this characterization to determine if they are independent. M.S.CP.3 Understand the conditional probability of <i>A</i> given <i>B</i> as $P(A \text{ and } B)/P(B)$, and interpret independence of <i>A</i> and <i>B</i> as saying that the conditional probability of <i>A</i> given <i>B</i> is the same as the probability of <i>A</i> , and the conditional probability of <i>B</i> given <i>A</i> is the same as the probability of <i>B</i> . M.S.CP.4 Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. M.S.CP.5 Recognize and explain the concepts of conditional probability and independence in everyday language and
	everyday situations.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Form pairs of objects by	Group together objects	Recognize possible or	Determine if two events	Communicate
matching two objects	by attribute values such	impossible outcomes of	are independent or	understanding that
sharing a specified	as shape or size (e.g.,	a simple event.	dependent.	compound events are
attribute. Contrast or	group together a	Communicate	Communicate	comprised of two or
distinguish objects	square, a rectangle, and	understanding that a	understanding that two	more simple events
based on attributes	a rhombus as they all	simple event results in a	events are independent	(e.g., getting a heads
such as shape, size,	have four sides).	single outcome (e.g.,	if the product of	and an even number
texture, and numerical		picking a penny from a	probabilities of two	when you toss a coin
pattern. Compare items		jar of coins).	independent events	and roll a die).
by attributes such as			equals the probability	
size, shape, and texture.			of both events	
			occurring together.	

How is the Initial Precursor related to the Target? In order to identify events as independent or dependent (i.e., probability), students begin by learning about attributes, numbers, and measurement. Educators draw student attention to new objects or stimuli, label and describe them (e.g., "this is a circle, so it won't have any sides", "this egg carton has 12 spaces, so it is likely that 12 eggs will fit into those spaces", "this book is a small book, so it's impossible for it to get bigger") and students observe, feel, or otherwise interact with the items. How is the Distal Precursor related to the Target? Proportional understanding is key when working toward describing events as independent or dependent (i.e., probability). Educators provide many opportunities for students to classify (i.e., group) items based on their size (e.g., compare two or more items and determine which is larger or smaller), amount (e.g., numbers larger or smaller than a given number), and distance between numbers (e.g., skip counting by 2, 5, or 10). Educators should also take care to use words like will, won't, might, likely, unlikely (e.g., "these will go in the same group", "these won't go in the same group") when working with sets. While students do not need to say these words, they do need to learn the meanings.

Instructional Resources

Released Testlets

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

M.EE.HS.S.CP.1-5 Identify when events are independent or dependent.

Mini-Map for M.EE.HS.S.IC.1-2

Subject: Mathematics Statistics and Probability—Making Inferences and Justifying Conclusions (S.IC) Grade: 11

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.S.IC.1-2 Determine the likelihood of an event	M.S.IC.1 Understand statistics as a process for making
occurring when the outcomes are equally likely to occur.	 inferences about population parameters based on a random sample from that population. M.S.IC.2 Decide if a specified model is consistent with results from a given data-generating process (e.g., using simulation). For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Compare the attributes	Recognize outcomes of	Recognize an event's	Determine the	Determine the
of two objects to	an event that are either	sample space by	probability of simple	theoretical probability
identify common	possible or impossible	identifying all the	events where all	of a simple event where
characteristics. Create a	(e.g., shown a picture of	possible outcomes of an	outcomes are equally	some outcomes are
pair by joining two	a girl standing in the	event (e.g., identify all	likely (e.g., the	more likely than others
separate objects.	rain with no umbrella,	possible outcomes of	theoretical probability	(e.g., drawing a green
	the student identifies	rolling a six-sided	of getting a 4 when	marble out of a bag
	possible outcomes such	number cube as	rolling a six-sided	where there are 2 blue
	as wet hair or wet	numbers 1-6).	number cube is 1/6).	marbles, 7 green
	clothes).			marbles, and 3 red
				marbles is 7/12).

How is the Initial Precursor related to the Target? In order to determine the likelihood of an event, students begin by learning about attributes, numbers, and measurement. Educators draw student attention to new objects or stimuli, label and describe them (e.g., "this is a circle; it won't have any sides", "compare sets of objects, counting them and comparing them using the words same, different, more, less", "use direct comparison to compare objects") and students observe, feel, or otherwise interact with the objects. How is the Distal Precursor related to the Target? Proportional understanding is key when working toward describing events as independent or dependent. Educators provide many opportunities for students to classify (i.e., group) items based on their size (e.g., compare two or more items and determine which is larger or smaller), amount (e.g., numbers larger or smaller than a given number), and distance between numbers (e.g., skip counting by 2, 5, or 10). Educators should also take care to use words like "will", "won't", "might", "likely", and "unlikely" when talking about events (e.g., "The traffic lights will change from red to green. The traffic lights won't change from red to blue.", "A ball is likely to bounce when it is dropped.", "It is unlikely I will travel to the moon."). While students do not need to say these words, they do need to learn the meanings.

Instructional Resources

Released Testlets
See the Guide to Practice Activities and Released Testlets.
Using Untested (UN) Nodes
See the document Using Mini-Maps to Plan Instruction.

M.EE.HS.S.IC.1-2 Determine the likelihood of an event occurring when the outcomes are equally likely to occur.

Mini-Map for M.EE.HS.G.CO.1

Subject: Mathematics Geometry—Congruence (G.CO) Grade: 9

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.G.CO.1 Know the attributes of perpendicular lines,	M.G.CO.1 Know precise definitions of angle, circle,
parallel lines, and line segments; angles; and circles.	perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize "same" as	Identify the symbols	Recognize the shape	Communicate	Communicate
the object that shares	that represent a point,	that represents a circle.	understanding that	understanding that
all of the same	ray, angle, and right	Recognize lines or line	perpendicular lines	vertical angles are
attributes as other	angle.	segments that intersect	intersect at a 90-degree	angles that are equal in
objects in a group.		at a 90-degree angle as	angle and parallel lines	measure and share a
Recognize "different" as		perpendicular lines or	are equal distance apart	vertex, a straight angle
the object that shares		line segments.	and do not intersect at	is an angle that has a
some or none of the		Recognize lines or line	any point.	measurement of 180
attributes as other		segments that are equal	Communicate	degrees, and adjacent
objects in a group.		distance apart and do	understanding that an	angles are angles next
Recognize attributes or		not intersect at any	angle is a figure (or	to each other that share
characteristics of an		point as parallel lines or	shape) formed by two	a ray and a vertex.
object, such as color,		line segments.	rays meeting at a	
orientation, length,			common endpoint, and	
width, and weight.			a circle is a two-	
			dimensional shape that	
			has an outline or	
			circumference that only	
			contains points that are	

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
			equidistant from a	
			common point, called	
			the center.	

How is the Initial Precursor related to the Target? Knowing the attributes of various shapes, angles, and lines requires a student to first recognize when basic objects and shapes are the same or different. Work on this understanding by providing students with a shape and naming it (e.g., "this is a square"). Then, provide multiple examples of the same shape, so students can make comparisons (e.g.,) focusing student attention on the characteristics that make this a particular shape (e.g., a square has 4 sides that are the same size). As students explore shapes, label them and describe them as same or different.

NOTE: When presenting the same shape for comparison, do use shapes with different colors, textures, sizes, and orientation so that students understand the attribute that makes it that shape (e.g., 4 sides that are the same size).

How is the Distal Precursor related to the Target? As students increase their understanding of what makes shapes the same or different, they will begin to learn about other characteristics that make up a shape. The educator will provide multiple objects and tactuals, helping the student explore them and guide the student using hand-under-hand to draw their attention to where lines start and stop (e.g., points and rays) and where two lines meet to make an angle.

NOTE: Recognizing point should only be taught in the context of a lesson on lines, line segments, and angles.

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

M.EE.HS.G.CO.1 Know the attributes of perpendicular lines, parallel lines, and line segments; angles; and circles.

Mini-Map for M.EE.HS.G.CO.4-5

Subject: Mathematics Geometry—Congruence (G.CO) Grade: 10

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.G.CO.4-5 Given a geometric figure and a rotation, reflection, or translation of that figure, identify the components of the two figures that are congruent.	 M.G.CO.4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments. M.G.CO.5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using e.g., graph
	paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize "same" as	Match familiar shapes	Identify the figure that	Communicate	Describe a sequence of
the object that shares	such as squares,	is translated from the	understanding that two	transformations that
all of the same	rectangles, circles with	original view as a	shapes are congruent if	would result in one
attributes as other	shapes of the same size	translation (slide),	the second can be	figure being
objects in a group.	but with different	rotated from the	obtained from the first	superimposed precisely
Recognize "different" as	orientations. Match	original view as a	by a sequence of	over the other figure.
the object that shares	familiar solids such as	rotation (turn), or	rotations, reflections,	
some or none of the	spheres, rectangular	reflected from the	and translations.	
attributes as other	prisms, cubes, or	original view as a		
objects in a group.	pyramids with solids of	reflection (flip). Match a		
	the same size but with	familiar shape, such as a		
	different orientations.	square, circle, triangle,		
		or rectangle, to a		
		congruent figure with		
		or without rotation or		
		reflection.		

How is the Initial Precursor related to the Target? Recognizing congruency requires a student to first recognize when basic objects and shapes are the same or different. Work on this understanding by providing students with a shape and naming it (e.g., "this is a square" . Then, provide multiple examples of the same shape so students can make comparisons, focusing student attention on the characteristics that make this a particular shape (e.g., a square has 4 sides that are the same size). As students explore shapes, label them and describe them as same or different.

NOTE: When presenting the same shape for comparison, do use shapes with different colors, textures, sizes, and orientation so that students understand the attribute that makes it that shape (e.g., 4 sides that are the same size).

How is the Distal Precursor related to the Target? As students develop an understanding of same and different shapes, provide opportunities for students to match or group the same shapes based on the shape size (e.g., "this is a big square", "this is a little square"). As students progress with identifying the size of shapes, the educator can begin to introduce different orientations of the shape.

NOTE: As new attributes (e.g., size and orientation) are introduced, be sure to support the student in remembering that the attribute doesn't change the name of the shape.

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

M.EE.HS.G.CO.4-5 Given a geometric figure and a rotation, reflection, or translation of that figure, identify the components of the two figures that are congruent.

Mini-Map for M.EE.HS.G.CO.6-8

Subject: Mathematics Geometry—Congruence (G.CO) Grade: 11

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.G.CO.6-8 Identify corresponding congruent and similar parts of shapes.	M.G.CO.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of
	congruence in terms of rigid motions to decide if they are congruent.
	M.G.CO.7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles
	are congruent.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize "same" as	Match two 3-	Recognize two shapes	Communicate	Communicate
the object that shares	dimensional shapes	that are congruent with	understanding that	understanding that two
all of the same	(e.g., spheres,	or without rotation or	congruent figures have	shapes are congruent if
attributes as other	rectangular prisms,	reflection. Recognize	the same shape and size	the second can be
objects in a group.	cubes, pyramids) or 2-	two-dimensional and	and that similar figures	obtained from the first
Recognize "different" as	dimensional shapes	three-dimensional	have the same shape	by a sequence of
the object that shares	(e.g., squares,	shapes that are similar.	but different sizes.	rotations, reflections,
some or none of the	rectangles, triangles)			and translations.
attributes as other	that are the same size			Communicate
objects in a group.	and have either the			understanding that two
	same or different			shapes are similar if the
	orientation. Match two			second can be obtained
	3-dimensional shapes			from the first by a
	(e.g., spheres,			sequence of dilations,

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	rectangular prisms,			rotations, reflections, or
	cubes, pyramids) or 2-			translations.
	dimensional shapes			
	(e.g. squares,			
	rectangles, triangles)			
	that are different sizes			
	and have either the			
	same or different			
	orientation.			

How is the Initial Precursor related to the Target? Recognizing congruent and similar parts of a shape requires a student to first recognize when basic objects and shapes are the same or different. Work on this understanding by providing students with a shape and naming it (e.g., "this is a square"). Then, provide multiple examples of the same shape so students can make comparisons, focusing student attention on the characteristics that make this a particular shape (e.g., a square has 4 sides that are the same size). As students explore shapes, label them and describe them as same or different.

NOTE: When presenting the same shape for comparison, do use shapes with different colors, textures, sizes, and orientation so that students understand the attribute that makes it that shape (e.g., 4 sides that are the same size).

How is the Distal Precursor related to the Target? As students develop an understanding of same and different shapes, provide opportunities for students to match or group the same shapes based on the shape size (e.g., "this is a big square", "this is a little square"). As students progress with identifying the size of shapes, the educator can begin to introduce different orientations of the shape as well as threedimensional shapes.

NOTE: As new attributes (e.g., size, orientation, threedimensional) are introduced, be sure to support the student in remembering that the attribute doesn't change the name of the shape.

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

M.EE.HS.G.CO.6-8 Identify corresponding congruent and similar parts of shapes.

Mini-Map for M.EE.HS.G.MG.1-3

Subject: Mathematics Geometry—Modeling with Geometry (G.MG) Grade: 9

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.G.MG.1-3 Use properties of geometric shapes to describe real-life objects.	 M.G.MG.1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). M.G.MG.2 Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). M.G.MG.3 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid
	systems based on ratios).

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize "same" as	Match two 3-	Recognize a square,	Identify a real-world	Create designs using
the object that shares	dimensional shapes	rectangle, circle,	object using a	paper clips, craft sticks,
all of the same	(e.g., spheres,	triangle, cube, cone,	geometrical shape (e.g.,	or straws to represent a
attributes as other	rectangular prisms,	cylinder, and sphere.	describing a roll of	given design problem
objects in a group.	cubes, pyramids) or 2-		paper towels as a	(e.g., soccer field in the
Recognize "different" as	dimensional shapes		cylinder).	shape of a rectangle).
the object that shares	(e.g., squares,			
some or none of the	rectangles, triangles)			
attributes as other	that have the same			
objects in a group.	orientation and either			
	the same or different			
	size.			

How is the Initial Precursor related to the Target? In order to describe real-life objects, students must first recognize when basic objects and shapes are the same or different. Work on this understanding by providing students with a shape and naming it (e.g., "this is a square"). Then provide multiple examples of the same shape so students can make comparisons, focusing student attention on the characteristics that make this a particular shape (e.g., a square has 4 sides that are the same size). As students explore shapes, label them and describe them as same or different.

NOTE: When presenting the same shape for comparison, do use shapes with different colors, textures, sizes, and orientation so that students understand the attribute that makes it that shape (e.g., 4 sides that are the same size).

How is the Distal Precursor related to the Target? As students develop an understanding of same and different shapes, provide opportunities for students to match or group the same shapes based on the shape size (e.g., "this is a big square", "this is a little square"). As students progress with identifying the size of shapes, the educator can begin to introduce different orientations of the shape as well as threedimensional shapes.

NOTE: As new attributes (e.g., size, orientation, threedimensional) are introduced, be sure to support the student in remembering that the attribute doesn't change the name of the shape.

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

Link to Text-Only Map

M.EE.HS.G.MG.1-3 Use properties of geometric shapes to describe real-life objects.

Mini-Map for M.EE.HS.G.GPE.7

Subject: Mathematics Geometry—Expressing Geometric Properties with Equations (G.GPE) Grade: 9

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.G.GPE.7 Find perimeters and areas of squares and	M.G.GPE.7 Use coordinates to compute perimeters of polygons
rectangles to solve real-world problems.	and areas of triangles and rectangles (e.g., using the distance
	formula).

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize attributes or	Recognize measurable	Calculate the perimeter	Solve real-world	Represent a real-life
characteristics of an	attributes (e.g., height,	of a polygon by adding	problems by	situation involving the
object, such as color,	depth, diameter,	up all the side lengths.	determining the area of	perimeter of a polygon
orientation, length,	weight) and	Calculate the area of a	a square or a rectangle.	or the area of a polygon
width, and weight.	differentiate them from	square or rectangle by	Solve real-world	using expressions,
	non-measurable	counting the number of	problems by calculating	equations, diagrams, or
	attributes (e.g., color or	square units drawn to	the perimeter of	graphs.
	orientation).	cover the area.	polygons.	

How is the Initial Precursor related to the Target?

In order to find the perimeter and area of a shape, students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "this is a circle, so it does not have sides", "this is a rectangle, so it has four sides"), and the student observes, feels, or otherwise interacts with the shapes.

How is the Distal Precursor related to the Target?

As students develop their attention to objects and notice the difference between objects, they will begin working on recognizing and describing measurable attributes. Students need lots of experience making direct comparisons between objects. Educators should use and demonstrate the meaning of comparison words (e.g., big/small, tall/short, longer/shorter). While students do not need to say them, they do need to learn their meaning.

Instructional Resources

Released Testlets See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

Mini-Map for M.EE.HS.N.Q.1-3

Subject: Mathematics Number and Quantity—Quantities (N.Q) Grade: 10

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.N.Q.1-3 Express quantities to the appropriate	M.N.Q.1 Use units as a way to understand problems and to
precision of measurement.	guide the solution of multi-step problems; choose and interpret
	units consistently in formulas; choose and interpret the scale
	and the origin in graphs and data displays.
	M.N.Q.2 Define appropriate quantities for the purpose of
	descriptive modeling.
	M.N.Q.3 Choose a level of accuracy appropriate to limitations
	on measurement when reporting quantities.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Without counting each	Round decimals to any	Solve word problems	Report answers to	Solve multi-step, real-
object, identify the	place by using standard	involving addition,	numerical problems	world problems
number of objects in a	rounding off rules (e.g.,	subtraction, and	involving decimals with	involving rational
set (up to four).	round up when the digit	multiplication of	a degree of precision	numbers, limiting all the
	in the tenths place is 5	rational numbers. (Limit	appropriate to the	numbers in the problem
	or greater, and round	decimal answers to	problem context (e.g.,	to whole numbers and
	down when the digit in	hundredths.)	report the area of a	decimals to the
	the tenths place is less		rectangle with sides 6.5	hundredths (e.g.,
	than 5). For example,		cm and 4.32 cm as 15.1	Miguel earns \$8.75
	round 8.5 to 9.0.		cm ² rather than 15.12	each day for 5 days. He
			cm²).	spends \$18.80 on a
				game. How much
				money does Miguel
				have left?).

How is the Initial Precursor related to the Target? To express quantities with precision, students first need to know number names, the count sequence, one-to-one correspondence, and have cardinality. These procedures and concepts develop through many experiences in early counting. Perceptual subitizing happens when the student is able to name the amount (1-3 items) without actually counting them. For example when an educator asks the student to get their shoes and asks, "How many shoes do you have?" The student would reply, "two," without using the count sequence of one, two. This only happens when students have been given many experiences counting small numbers with many different contexts and materials.

NOTE: Students who are blind will learn to use tactile enumeration for 1-3 items.

How is the Distal Precursor related to the Target? As students continue to gain experience in counting, educators will introduce the concept that 10 can be grouped into one unit. Educators will use models that help students perceive a group of 10 and some more (e.g., bundles, ten-frames, number line, arrays, etc.). Teen numbers are an important part of understanding this concept. Additionally, educators provide students experience working with money values (e.g., \$2.42, \$0.67, \$5.94) and learning how to round up to the nearest dollar (e.g., \$2.42 rounds to \$3.00) or tenths place (e.g., \$0.67 rounds to \$0.70) or ones place (e.g., \$5.94 rounds to \$5.95). Students should also have experience with rounding down, but not in the context of money (e.g., 0.73 rounds to 70).

Released Testlets		
See the Guide to Practice Activities and Released Testlets.		
Using Untested (UN) Nodes		

Link to Text-Only Map

M.EE.HS.N.Q.1-3 Express quantities to the appropriate precision of measurement.

Mini-Map for M.EE.HS.S.ID.1-2

Subject: Mathematics Statistics and Probability—Interpreting Categorical and Quantitative Data (S.ID) Grade: 10

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.S.ID.1-2 Given data, construct a simple graph (line, pie,	M.S.ID.1 Represent data with plots on the real number line (dot
bar, or picture) or table, and interpret the data.	plots, histograms, and box plots).
	M.S.ID.2 Use statistics appropriate to the shape of the data
	distribution to compare center (median, mean) and spread
	(interquartile range, standard deviation) of two or more
	different data sets.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Arrange objects in a	Recognize the structure	Answer questions by	Represent data on bar	Draw inferences or
specific order (e.g.,	of bar, picture, line	lifting information from	graphs, picture graphs,	make predictions by
smallest to largest).	graphs, and pie charts,	a bar graph, picture	line graphs, and pie	interpreting
Group objects by some	such as the title and	graph, or line plot and	charts. Use bar graphs,	information presented
attribute value (e.g.,	labels for the x- and y-	understand the	picture graphs, line	on a bar graph, picture
shape, size, texture,	axes. Understand that	information	graphs, and pie charts	graph, line graph, or pie
numerical pattern).	bars are used to display	represented on the	to answer questions	chart (e.g., on the bar
	data on bar graphs.	graph (e.g., in the graph	(e.g., how many, most,	graph representing the
	Understand that	representing students'	least) that require	number of pizzas
	pictures, symbols, or	favorite ice cream, how	interpretation and	required for a certain
	geometric figures are	many students like	integration of	number of people,
	used to display data on	strawberry ice cream?	information presented	predict the number of
	picture graphs.	How many students like	in the graph.	pizzas needed for 20
	Understand that points	chocolate ice cream?).		people).
	joined by a line are used			
	to represent data on			

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	line graphs, and sectors			
	are used to represent			
	data on pie charts.			

How is the Initial Precursor related to the Target? In order to represent and use data, students begin by learning to recognize what is the same and different between familiar items such as color, shape, quantity, size, texture, and pattern. Educators should take care to use words that describe (e.g., more, less, red circle, same, different) while defining and demonstrating their meaning. While students do not need to say these words, they do need to learn the meanings. Students will also begin to group two or more items in the same set based on an attribute (e.g., two CDs, bumpy balls and bumpy gravel, red rectangles). As the students group two or more items, the educator will demonstrate the representation in graphs and charts and encourage students to actively participate in their creation.

How is the Distal Precursor related to the Target?

Students actively participate in the creation of bar graphs, picture graphs, line graphs, and pie charts by placing representations for each response to the research question.

Released Testlets
See the Guide to Practice Activities and Released Testlets.
Using Untested (UN) Nodes

M.EE.HS.S.ID.1-2 Given data, construct a simple graph (line, pie, bar, or picture) or table, and interpret the data.

Mini-Map for M.EE.HS.S.ID.3

Subject: Mathematics Statistics and Probability—Interpreting Categorical and Quantitative Data (S.ID) Grade: 11

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.S.ID.3 Interpret general trends on a graph or chart.	M.S.ID.3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Arrange objects in a	Recognize the structure	Recognize symmetric	Analyze the overall	Draw inferences by
specific order (e.g.,	of bar graphs, picture	distribution, outliers,	shape of the data	comparing the shape
smallest to largest).	graphs, line plots, and	and peaks in a data	distribution and	and spread of two data
Group objects by some	pie charts, such as the	distribution shown	communicate whether	sets (e.g., the student
attribute value (e.g.,	title and labels for the	graphically. Recognize	the distribution is	compares the peaks of
shape, size, texture,	<i>x</i> - and <i>y</i> -axes.	data values	symmetric, has	two sets of data, height
numerical pattern).	Understand that bars	substantially larger or	outlier(s), or peaks.	of soccer players and
	are used to display data	smaller than the other	Draw inferences by	height of basketball
	on bar graphs.	values as outliers.	interpreting general	players, to
	Understand that	Recognize peaks as data	trends on a graph or	communicate that
	pictures, symbols, or	values that most	chart.	basketball players are,
	geometric figures are	frequently occur.		in general, taller than
	used to display data on	Recognize symmetric		soccer players).
	picture graphs.	distribution as		
	Understand that on a	distributions where the		
	line plot, "x" is used to	left- and right-hand		
	represent the data	sides of the		
	values, and sectors are	distributions are		
		roughly equal.		

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	used to represent data	Recognize whether a		
	on pie charts.	set of scores is spread-		
		out or grouped together		
		(variability).		

How is the Initial Precursor related to the Target? In order to construct a graph, students begin by learning to recognize what is the same and different between familiar items, such as color, shape, quantity, size, texture, and pattern. Educators should take care to use words that describe (e.g., more, less, red circle, same, different) while defining and demonstrating their meaning. While students do not need to say these words, they do need to learn the meanings. Students will also begin to group two or more items in the same set based on an attribute (e.g., two CDs, bumpy balls and bumpy gravel, red rectangles). As the students group two or more items, the educator will demonstrate the representation in graphs and charts and encourage students to actively participate in their creation.

How is the Distal Precursor related to the Target?

Students actively participate in the creation of bar graphs, picture graphs, line graphs, and pie charts by placing representations for each response to the research question.

Instructional Resources

Released Testlets
See the Guide to Practice Activities and Released Testlets.
Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

Link to Text-Only Map

M.EE.HS.S.ID.3 Interpret general trends on a graph or chart.

Mini-Map for M.EE.HS.S.ID.4

Subject: Mathematics Statistics and Probability—Interpreting Categorical and Quantitative Data (S.ID) Grade: 10

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.S.ID.4 Calculate the mean of a given data set (limit the	M.S.ID.4 Use the mean and standard deviation of a data set to
number of data points to fewer than five).	fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize attributes or characteristics of an object, such as color, orientation, length, width, and weight.	Group objects by some attribute value (e.g., shape, size, texture, numerical pattern).	Communicate the number of observations for a given set of data [e.g., the number of observations in a data set {2, 5, 8, 10, 15, 4, 8} is 7].	Calculate mean by dividing the sum of all data by the number of observations.	Summarize data by calculating the mode or median [e.g., the mode for the data set {1, 2, 5, 6, 2, 3, 4, 2, 2} is 2].

How is the Initial Precursor related to the Target? In order to calculate the mean of a data set, students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "this is a circle since it does not have any sides", "two fidgets are big and two fidgets are small"), and the student observes, feels, or otherwise interacts with the shapes. Students also work on counting small units, recognizing that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. As educators present a set, label it (e.g., two balls, one bear, three blocks), count the items, label it again, and encourage students to use numbers to label and count the separate sets. How is the Distal Precursor related to the Target? As students develop their ability to attend to the details of an object and to count objects, educators provide many opportunities for students to classify (group) items based on their size (e.g., compare two or more items and determine which is larger or smaller), amount (e.g., numbers larger or smaller than a given number), and distance between numbers (e.g., skip counting by 2, 5, or 10). Educators should also take care to use attribute words when defining and demonstrating grouping items. While students do not need to say these words, they do need to learn the meanings.

Released Testlets			
See the Guide to Practice Activities and Released Testlets.			
Using Untested (UN) Nodes			
Using Untested (UN) Nodes			

M.EE.HS.S.ID.4 Calculate the mean of a given data set (limit the number of data points to fewer than five).

Мар Кеу			
IP	Initial Precursor		
DP	Distal Precursor		
PP	Proximal Precursor		
Т	Target		
S	Successor		
UN Untested			
Boxes indicate tested nodes			

Mini-Map for M.EE.HS.A.CED.1

Subject: Mathematics Algebra—Creating Equations (A.CED) Grade: 10

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.A.CED.1 Create an equation involving one operation with one variable, and use it to solve a real-world problem.	M.A.CED.1 Create equations and inequalities in one variable, and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Combine two or more	Represent addition,	Represent expressions	Solve real-world	Solve equations with
sets of objects or	subtraction,	using variables and	problems with non-	non-negative rational
numbers to form a new	multiplication, or	numbers (e.g., express	negative rational	numbers involving
set. Divide a set of 10 or	division word problems	subtract <i>k</i> from 12 as 12	numbers by	addition, subtraction,
fewer objects into two	or models with	- <i>k</i>). Recognize that the	representing the	multiplication, or
or more distinct subsets	equations (e.g.,	unknown quantity in an	situation with a	division operations in
(e.g., dividing a set	representing 6 marbles	equation is represented	mathematical equation	one variable (e.g., 8.4 +
containing 10 objects	plus 2 marbles equal 8	using a symbol or letter	(e.g., Mark has 3.5	<i>x</i> = 17.56).
into two subsets	marbles as 6 + 2 = 8	(e.g., 5 + <i>b</i> = 8).	inches of string. Mark	
containing 4 and 6	marbles).		gets 1 more inch of	
objects).			string. Which equation	
			shows how much string	
			Mark has all together?	
			3.5 + 1 = <i>x</i>).	

How is the Initial Precursor related to the Target? Representing and solving equations requires a student to count small units, recognizing that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. The educator presents a set, labels it (e.g., two balls, one marker, three CDs), counts the items, labels it again, and encourages students to use numbers to label and count the separate sets. The general goal is to explore how the set changes when items are separated out (partitioned) or combined.

How is the Distal Precursor related to the Target? As students begin to understand labeling and counting small sets, they begin to use the number sequence and become more adept at tracking individual objects. Work on this skill using a variety of sets, labeling and counting the sets, and moving items in and out of the sets, labeling and counting the set again. Additionally, the educators will pair those sets with the symbolic representations for addition, subtraction, multiplication, and division (e.g., $3 \times 2 = ?, 3 - 2 = ?$).

NOTE: Educators can work on the Distal Precursor level using the sets of numbers that students working at the Target level are working with.

Released Testlets		
See the Guide to Practice Activities and Released Testlets.		
Using Untested (UN) Nodes		
Using Untested (UN) Nodes		

Link to Text-Only Map

M.EE.HS.A.CED.1 Create an equation involving one operation with one variable, and use it to solve a real-world problem.

Mini-Map for M.EE.HS.A.CED.2-4

Subject: Mathematics Algebra—Creating Equations (A.CED) Grade: 10

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.A.CED.2-4 Solve one-step inequalities.	M.A.CED.2 Create equations in two or more variables to
	represent relationships between quantities; graph equations on
	coordinate axes with labels and scales.
	M.A.CED.3 Represent constraints by equations or inequalities,
	and by systems of equations and/or inequalities, and interpret
	solutions as viable or nonviable options in a modeling context.
	M.A.CED.4 Rearrange formulas to highlight a quantity of
	interest, using the same reasoning as in solving equations.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Combine two or more	Represent addition,	Solve linear equations	Solve linear inequalities	Explain a solution to a
sets of objects or	subtraction,	involving addition,	in one variable (e.g., x +	linear inequality in one
numbers to form a new	multiplication, or	subtraction,	7 < 14), and represent	variable (e.g., x < 8
set. Divide a set of 10 or	division word problems	multiplication, or	solutions to inequalities	means that x takes all
fewer objects into two	or models with	division operations in	on a number line.	the values less than 8;
or more distinct subsets	equations (e.g.,	one variable (e.g., 8.4 +		i.e., 7, 6, 5).
(e.g., dividing a set	representing 6 marbles	<i>x</i> = 17.56).		
containing 10 objects	plus 2 marbles equal 8			
into two subsets	marbles as 6 + 2 = 8			
containing 4 and 6	marbles).			
objects).				

How is the Initial Precursor related to the Target?

The knowledge needed to solve one-step inequalities requires students to manipulate sets (i.e., combining and separating or partitioning). Provide students many opportunities to take a set of objects (e.g., tiles, linking cubes, buttons) and separate them based on a given characteristic (e.g., shape, color, size) into two distinct sets, then separate them again based on another characteristic. Guide students to notice how the set size changes each time you combine or partition the sets.

How is the Distal Precursor related to the Target?

As students begin to understand labeling and counting sets, they begin to use the number sequence and become more adept at tracking individual objects. Work on this skill using a variety of sets, labeling and counting the sets, and moving items in and out of the sets, labeling and counting the set again. Additionally, the educators will pair those sets with the symbolic representations for addition, subtraction, multiplication, and division (e.g., 3 + 2 = ?, $3 \times 2 = ?$).

Released Testlets				
See the Guide to Practice Activities and Released Testlets.				
Using Untested (UN) Nodes				
See the document Using Mini-Maps to Plan Instruction.				

Link to Text-Only Map

M.EE.HS.A.CED.2-4 Solve one-step inequalities.

Mini-Map for M.EE.HS.A.SSE.1

Subject: Mathematics Algebra—Seeing Structure in Expressions (A.SSE) Grade: 9

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.A.SSE.1 Identify an algebraic expression involving one	M.A.SSE.1 Interpret expressions that represent a quantity in
arithmetic operation to represent a real-world problem.	terms of its context.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Combine two or more	Represent addition,	Represent expressions	Represent real-world	Solve real-world
sets of objects or	subtraction,	using variables and	problems using	problems by
numbers to form a new	multiplication, or	numbers (e.g., express	expressions and	representing problems
set. Divide a set of 10 or	division word problems	subtract <i>k</i> from 12 as 12	equations.	using equations with
fewer objects into two	or models with	- <i>k</i>). Recognize that the		non-negative rational
or more distinct subsets	equations (e.g.,	unknown quantity in an		numbers.
(e.g., dividing a set	representing 6 marbles	equation is represented		
containing 10 objects	plus 2 marbles equal 8	using a symbol or letter		
into two subsets	marbles as 6 + 2 = 8	(e.g., 5 + <i>b</i> = 8).		
containing 4 and 6	marbles).			
objects).				

How is the Initial Precursor related to the Target? The knowledge needed to represent equations requires students to manipulate sets (i.e., combining and separating or partitioning). Provide students many opportunities to take a set of objects (e.g., tiles, linking cubes, buttons) and separate them based on a given characteristic (e.g., shape, color, size) into two distinct sets, then separate them again based on another characteristic. Guide students to notice how the set size changes each time you combine or partition the sets.

How is the Distal Precursor related to the Target?

As students begin to understand labeling and counting sets, they begin to use the number sequence and become more adept at tracking individual objects. Work on this skill using a variety of sets, labeling and counting the sets, and moving items in and out of the sets, labeling and counting the set again. Additionally, the educators will pair those sets with the symbolic representations for addition, subtraction, multiplication, and division (e.g., 3 + 2 = ?, $3 \times 2 = ?$).

Released Testlets			
See the Guide to Practice Activities and Released Testlets.			
Using Untested (UN) Nodes			

Link to Text-Only Map

M.EE.HS.A.SSE.1 Identify an algebraic expression involving one arithmetic operation to represent a real-world problem.

Mini-Map for M.EE.HS.A.SSE.3

Subject: Mathematics Algebra—Seeing Structure in Expressions (A.SSE) Grade: 9

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.A.SSE.3 Solve simple algebraic equations with one	M.A.SSE.3 Choose and produce an equivalent form of an
variable using multiplication and division.	expression to reveal and explain properties of the quantity represented by the expression.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Combine two or more	Demonstrate	Determine the	Solve linear equations	Solve linear inequalities
sets of objects or	multiplication by	unknown factor or	with non-negative	in one variable (e.g.,
numbers to form a new	combining multiple sets	product in an equation	rational numbers	2.5 <i>x</i> > 100.25).
set. Divide a set of 10 or	containing the same	involving multiplication	involving addition or	
fewer objects into two	number of objects.	(e.g., 6 x 7 = ?) .	subtraction operations	
or more distinct subsets	Communicate	Determine the	in one variable (e.g., 3.3	
(e.g., dividing a set	understanding that the	unknown divisor,	+ <i>x</i> = 8.9).	
containing 10 objects	number of sets times	dividend, or quotient in		
into two subsets	the number of objects	an equation involving		
containing 4 and 6	in each set equals the	division (e.g., 24 ÷ 4 =		
objects).	total number of objects.	?).		
	Demonstrate			
	understanding of			
	division by splitting a			
	set into an equal			
	number of subsets and			
	communicating the			
	quotient as the number			
	of equal subsets (e.g., a			
	set consisting of 15			

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	objects has three			
	subsets, each			
	containing 5 objects).			

How is the Initial Precursor related to the Target? The knowledge needed to represent equations requires students to manipulate sets (i.e., combining and separating or partitioning). Provide students many opportunities to take a set of objects (e.g., tiles, linking cubes, buttons) and separate them based on a given characteristic (e.g., shape, color, size) into two distinct sets, then separate them again based on another characteristic. Guide students to notice how the set size changes each time you combine or partition the sets.

How is the Distal Precursor related to the Target? As students' understanding of labeling and counting sets develops, they will begin working on adding items to a set and combining sets to create a new set. Additionally, students will work on developing an understanding of equal shares by actively participating in one-to-one distribution of objects to person (e.g., giving each person in the group two pencils), objects to objects (e.g., given four counters, they would line up four more counters in front of or on top of the first set), and objects to available space (e.g., given three chairs at a table, the student places a cup on the table for each available chair). Students should also experience dividing a whole into equal shares (e.g., having 15 counters and 3 people in the group, give one to each person until there are no more, then count how many each person received).

Released Testlets				
See the Guide to Practice Activities and Released Testlets.				
Using Untested (UN) Nodes				

M.EE.HS.A.SSE.3 Solve simple algebraic equations with one variable using multiplication and division.

Mini-Map for M.EE.HS.A.REI.10-12

Subject: Mathematics Algebra—Reasoning with Equations and Inequalities (A.REI) Grade: 10

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.A.REI.10-12 Interpret the meaning of a point on the	M.A.REI.10 Understand that the graph of an equation in two
graph of a line. For example, on a graph of pizza purchases,	variables is the set of all its solutions plotted in the coordinate
trace the graph to a point and tell the number of pizzas	plane, often forming a curve (which could be a line).
purchased and the total cost of the pizzas.	M.A.REI.11 Explain why the x-coordinates of the points where
	the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the
	solutions of the equation $f(x) = g(x)$; find the solutions
	approximately, e.g., using technology to graph the functions,
	make tables of values, or find successive approximations.
	Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial,
	rational, absolute value, exponential, and logarithmic functions.
	M.A.REI.12 Graph the solutions to a linear inequality in two
	variables as a half-plane (excluding the boundary in the case of
	a strict inequality), and graph the solution set to a system of
	linear inequalities in two variables as the intersection of the
	corresponding half-planes.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Form a pair by	Communicate	Recognize covariation	Examine the shape of a	Find solutions to real-
arranging objects in	understanding that a	as the pattern in which	linear function graph to	world problems by
specific order (e.g.,	coordinate pair	two variables or	recognize the	interpreting linear
putting together a	(ordered pair) is a set of	quantities change	relationship between	function graphs.
pencil and a ruler,	numbers used to show	together. Recognize the	two varying quantities	
where the pencil is	a position on a graph.	direction in which two	(e.g., increasing,	
placed first and the	The first number, "x," or	variables change	decreasing, constant).	
	the x-coordinate in the	together (e.g., as x	Use the understanding	

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
ruler is placed next to	coordinate pair (x, y),	increases, y decreases).	of linear functions to	
it).	represents x units left	Describe the rate of	interpret the meaning	
	or right on the <i>x</i> -axis.	change in a function	of a point on a linear	
	The second number,	graph by quantifying	function graph [e.g., the	
	"y," or the y-coordinate,	covariation between	point (5, 2) might	
	represents y units up or	two variables (e.g., as x	represent that 5 people	
	down on the <i>y</i> -axis	increases by 2 units, y	need 2 medium-sized	
	[e.g., (4, 8) represents 4	decreases by 3 units).	pizzas].	
	units right on the <i>x</i> -axis			
	and 8 units up on the y-			
	axis].			

How is the Initial Precursor related to the Target? In order to analyze function graphs, students begin by learning to notice what is new. The educator draws the students attention to new objects or stimuli, labels them (e.g., "this set has all red objects; this set has all blue", "these fidgets are big; these fidgets are small"), and the student observes, feels, or otherwise interacts with them. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different. Educators provide sorting activities that allow learners to isolate specific attributes while recognizing likenesses and differences among objects. Educators also provide activities that reinforce the skill of ordering (e.g., arrangement of objects from largest to smallest, sequencing daily events, and counting).

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

M.EE.HS.A.REI.10-12 Interpret the meaning of a point on the graph of a line. For example, on a graph of pizza purchases, trace the graph to a point and tell the number of pizzas purchased and the total cost of the pizzas.

Mini-Map for M.EE.HS.A.SSE.4

Subject: Mathematics Algebra—Seeing Structure in Expressions (A.SSE) Grade: 11

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.A.SSE.4 Determine the successive term in a geometric	M.A.SSE.4 Derive the formula for the sum of a finite geometric
sequence given the common ratio.	series (when the common ratio is not 1), and use the formula to
	solve problems. For example, calculate mortgage payments.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Group together objects	Recognize patterns (i.e.,	Recognize a geometric	Communicate the next	Determine any term in
by attribute values such	repeating, growing,	sequence as an ordered	term in a geometric	a geometric sequence
as shape or size (e.g.,	shrinking) involving	list of numbers, such	sequence by	when the first term,
group together a	numbers or letters (e.g.,	that each term after the	determining how each	common ratio, and the
square, a rectangle, and	a, b, b, a, b, b; 2, 5, 8,	first is determined by	term in a sequence is	nth term formula of a
a rhombus, as they all	11). Identify a	multiplying or dividing	obtained from the	geometric sequence are
have four sides).	sequence as an ordered	the preceding term by a	previous term (e.g., the	given [e.g., given the
Contrast or distinguish	list of numbers that	constant amount (e.g.,	next term in the	<i>n</i> th term formula, <i>a_n</i> =
objects based on	adheres to a common	2, 4, 8, 16). Recognize	geometric sequence 2,	<i>ar</i> ⁽ⁿ⁻¹⁾ , first term as 2
attributes, such as	rule between	the recursive rule in	4, 8, 16 is 32).	and the common ratio
shape, size, texture, and	corresponding numbers	geometric sequences by		3, the 4th term will be 2
numerical pattern.	(e.g., 2, 4, 6, 8).	determining how each		$x 3^{(4-1)} = 2 x 3^3 = 54].$
Order objects by		term in the sequence		
following a specific rule		differs from the		
(e.g., arrange three		preceding term (e.g.,		
objects with different		the recursive rule in the		
sizes from the smallest		sequence 2, 4, 8, 16 is		
to largest).		"multiply by 2").		

How is the Initial Precursor related to the Target? In order to determine a geometric sequence (e.g., 2, 4, 8, 16, 32), students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "there are two cubes", "this is a circle", "this fidget is big and this fidget is small"), and the student observes, feels, or otherwise interacts with them. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different. How is the Distal Precursor related to the Target? As students develop their understanding of attributes and work toward geometric sequences, educators provide interactive lessons around patterns using attributes like shape, size, and color. At this level, students are also expected to recognize symbolic (e.g., number) patterns. This also requires that students recognize numerals in order (i.e., 1, 2, 3...). Educators should take care to use number names while defining and demonstrating symbolic sequences. While students do not need to say these words, they do need to learn the meanings and the sequence.

Instructional Resources

Released Testlets

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

M.EE.HS.A.SSE.4 Determine the successive term in a geometric sequence given the common ratio.

Mini-Map for M.EE.HS.F.BF.1

Subject: Mathematics Functions—Building Functions (F.BF) Grade: 10

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.F.BF.1 Select the appropriate graphical representation (first quadrant) given a situation involving constant rate of change.	M.F.BF.1 Write a function that describes a relationship between two quantities.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Arrange objects in a	Communicate	Recognize covariation	Represent a real-world	Find solutions to real-
specific order (e.g.,	understanding that a	as the pattern in which	problem in the form of	world problems by
smallest to largest).	coordinate pair	two variables or	a graph.	interpreting linear
Form a pair by putting	(ordered pair) is a set of	quantities change		function graphs.
together two objects	numbers used to show	together. Recognize the		
(e.g., putting together a	a position on a graph.	direction in which two		
pencil and a ruler).	The first number, "x," or	variables change		
	the x-coordinate in the	together (e.g., as x		
	coordinate pair (<i>x, y</i>),	increases, y decreases).		
	represents x units left	Describe the rate of		
	or right on the <i>x</i> -axis.	change in a function		
	The second number,	graph by quantifying		
	"y," or the y-coordinate,	covariation between		
	represents y units up or	two variables (e.g., as x		
	down on the y-axis [e.g,	increases by 2 units, y		
	(4, 8) represents 4 units	decreases by 3 units).		
	right on the <i>x</i> -axis and 8			
	units up on the y-axis].			

How is the Initial Precursor related to the Target? In order to represent real-world problems on graphs, students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "this set has all red objects; this set has all blue", "these fidgets are big; these fidgets are small"), and the student observes, feels, or otherwise interacts with them. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different. Educators provide sorting activities that allow learners to isolate specific attributes while recognizing likenesses and differences among objects. Educators also provide activities that reinforce the skill of ordering (e.g., arrangement of objects from largest to smallest, sequencing daily events, and counting).

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

Mini-Map for M.EE.HS.F.BF.2

Subject: Mathematics Functions—Building Functions (F.BF) Grade: 11

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.F.BF.2 Determine an arithmetic sequence with whole	M.F.BF.2 Write arithmetic and geometric sequences both
numbers when provided a recursive rule.	recursively and with an explicit formula, use them to model
	situations, and translate between the two forms.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Group together objects	Recognize patterns (i.e.,	Recognize an arithmetic	Communicate the next	Determine any term in
by attribute values such	repeating, growing,	sequence as an ordered	term in an arithmetic	an arithmetic sequence
as shape or size (e.g.,	shrinking) involving	list of numbers, such	sequence by	when the first term (a),
group together a	numbers or letters (e.g.,	that each term after the	determining how each	common difference (<i>d</i>),
square, a rectangle, and	a, b, b, a, b, b; 2, 5, 8,	first is determined by	term in a sequence is	and the <i>n</i> th term
a rhombus, as they all	11). Identify a	adding or subtracting	obtained from the	formula for an
have four sides).	sequence as an ordered	the preceding term by a	previous term (e.g., the	arithmetic sequence are
Contrast or distinguish	list of numbers that	constant amount (e.g.,	next term in the	given [e.g., when the
objects based on	adheres to a common	2, 4, 8, 16). Recognize	sequence 2, 4, 6, 8 is	<i>n</i> th term formula is <i>a</i> +
attributes such as	rule between	the recursive rule in	10).	d(n - 1), the first term is
shape, size, texture, and	corresponding numbers	arithmetic sequences		5, and the common
numerical pattern.	(e.g., 2, 4, 6, 8).	by determining how		difference is 3, the 6th
Order objects by		each term in the		term equals 5 + 3(6 - 1)
following a specific rule		sequence differs from		= 20].
(e.g., arrange three		the preceding term		
objects with different		(e.g., the recursive rule		
sizes from the smallest		in the sequence 2, 4, 6,		
to largest).		8 is "add 2").		

sequence.

How is the Initial Precursor related to the Target? In order to determine an arithmetic sequence (e.g., 1, 4, 7, 10, 13), students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "there are two cubes", "this is a circle", "this fidget is big and this fidget is small"), and the student observes, feels, or otherwise interacts with them. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different.

How is the Distal Precursor related to the Target? As students develop their understanding of attributes and work towards arithmetic sequences, educators provide interactive lessons around patterns using attributes like shape, size, and color. At this level, students are also expected to recognize symbolic (e.g. numbers) patterns. This also requires that students recognize numerals in order (i.e., 1, 2, 3...). Educators should take care to use number names while defining and demonstrating symbolic sequences. While students do not need to say these words, they do need to learn the meanings and the

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

M.EE.HS.F.BF.2 Determine an arithmetic sequence with whole numbers when provided a recursive rule.

Mini-Map for M.EE.HS.F.IF.1-3

Subject: Mathematics Functions—Interpreting Functions (F.IF) Grade: 11

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.F.IF.1-3 Use the concept of function to solve problems.	M.F.IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x . The graph of f is
	the graph of the equation $y = f(x)$. M.F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. M.F.IF.3 Recognize that sequences are functions, sometimes
	defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(n + 1) = f(n) + f(n - 1)$ for $n \ge 1$.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Arrange objects in a	Communicate	Describe the rate of	Find solutions to real-	Extend, predict, or infer
specific order (e.g.,	understanding that a	change in a function	world problems by	information presented
smallest to largest).	coordinate pair	graph and a function	interpreting linear	in linear function graphs
Form a pair by putting	(ordered pair) is a set of	table by quantifying the	function graphs and	and function tables.
together two objects	numbers used to show	covariation between	tables.	
(e.g., putting together a	a position on a graph.	two variables (e.g.,		
pencil and a ruler).	The first number, "x," or	describes that as x		
	the x-coordinate in the	increases by 2 units, y		
	coordinate pair (x, y),	decreases by 3 units).		
	represents x units left			

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	or right on the <i>x</i> -axis.			
	The second number,			
	"y," or the y-coordinate,			
	represents y units up or			
	down on the y-axis			
	[e.g., (4, 8) represents 4			
	units right on the <i>x</i> -axis			
	and 8 units up on the y-			
	axis].			

How is the Initial Precursor related to the Target? In order to use functions to solve problems, students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "this set has all red objects; this set has all blue", "these fidgets are big; these fidgets are small"), and the student observes, feels, or otherwise interacts with them. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different. Educators provide sorting activities that allow learners to isolate specific attributes while recognizing likenesses and differences among objects. Educators also provide activities that reinforce the skill of ordering (e.g., arrangement of objects from largest to smallest, sequencing daily events, and counting).

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

M.EE.HS.F.IF.1-3 Use the concept of function to solve problems.

Mini-Map for M.EE.HS.F.IF.4-6

Subject: Mathematics Functions—Interpreting Functions (F.IF) Grade: 11

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.F.IF.4-6 Construct graphs that represent linear	M.F.IF.4 For a function that models a relationship between two
functions with different rates of change and interpret which is	quantities, interpret key features of graphs and tables in terms
faster/slower, higher/lower, etc.	of the quantities, and sketch graphs showing key features given
	a verbal description of the relationship. Key features include
	intercepts; intervals where the function is increasing,
	decreasing, positive, or negative; relative maximums and
	minimums; symmetries; end behavior; and periodicity.
	M.F.IF.5 Relate the domain of a function to its graph and,
	where applicable, to the quantitative relationship it describes.
	For example, if the function $h(n)$ gives the number of person-
	hours it takes to assemble <i>n</i> engines in a factory, then the
	positive integers would be an appropriate domain for the
	function.
	M.F.IF.6 Calculate and interpret the average rate of change of a
	function (presented symbolically or as a table) over a specified
	interval. Estimate the rate of change from a graph.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Arrange objects in a	Communicate	Recognize covariation	Communicate whether	Solve real-world
specific order (e.g.,	understanding that a	as the pattern in which	a linear function graph	problems by
smallest to largest).	coordinate pair	two variables or	has an increasing,	interpreting linear
Form a pair by putting	(ordered pair) is a set of	quantities change	decreasing, or constant	function graphs.
together two objects	numbers used to show	together. Recognize the	rate of change.	Compare rates of
(e.g., putting together a	a position on a graph.	direction in which two	Compare two functions	change, x- and y-
pencil and a ruler).	The first number, "x," or	variables change	with different rates of	intercepts, direction of

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	the x-coordinate in the	together (e.g., as x	change to communicate	change (covariation), or
	coordinate pair (x, y),	increases, y decreases).	which function is faster	overall shape of two
	represents x units left	Describe the rate of	or slower, higher or	linear functions
	or right on the <i>x</i> -axis.	change in a function	lower.	represented graphically.
	The second number,	graph by quantifying		
	"y," or the y-coordinate,	covariation between		
	represents y units up or	two variables (e.g., as x		
	down on the <i>y</i> -axis	increases by 2 units, y		
	[e.g., (4, 8) represents 4	decreases by 3 units).		
	units right on the <i>x</i> -axis			
	and 8 units up on the y-			
	axis].			

How is the Initial Precursor related to the Target? In order to construct graphs that represent a linear function, students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "this set has all red objects; this set has all blue", "these fidgets are big; these fidgets are small"), and the student observes, feels, or otherwise interacts with them. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different. Educators provide sorting activities that allow learners to isolate specific attributes while recognizing likenesses and differences among objects. Educators also provide activities that reinforce the skill of ordering (e.g., arrangement of objects from largest to smallest, sequencing daily events, and counting).

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

M.EE.HS.F.IF.4-6 Construct graphs that represent linear functions with different rates of change and interpret which is faster/slower, higher/lower, etc.

Mini-Map for M.EE.HS.F.LE.1-3

Subject: Mathematics Functions—Linear, Quadratic, and Exponential Models (F.LE) Grade: 11

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.HS.F.LE.1-3 Model a simple linear function such as <i>y</i> = <i>mx</i> to show that these functions increase by equal amounts over equal intervals.	 M.F.LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions. M.F.LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). M.F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Arrange objects in a	Communicate	Recognize covariation	Determine the rate of	Identify or name
specific order (e.g.,	understanding that a	as the pattern in which	change of linear	intervals where the
smallest to largest).	coordinate pair	two variables or	functions.	function is increasing or
Form a pair by putting	(ordered pair) is a set of	quantities change	Communicate	decreasing. Estimate
together two objects	numbers used to show	together. Recognize the	understanding that the	average rate of change
(e.g., putting together a	a position on a graph.	direction in which two	average rate of change	when given a graph.
pencil and a ruler).	The first number, "x," or	variables change	is the ratio between the	
	the x-coordinate in the	together (e.g., as x	change in a quantity	
	coordinate pair (x, y),	increases, y decreases).	over an interval of time.	
	represents x units left	Calculate slope given		
	or right on the <i>x</i> -axis.	sets of coordinate pairs		
	The second number,	[e.g., given a set of		
	"y," or the y-coordinate,	coordinates (4, 5) and		

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	represents y units up or	(6, 10), calculate slope		
	down on the <i>y</i> -axis	as (10 - 5)/(6 - 4) = 5/2].		
	[e.g., (4, 8) represents 4			
	units right on the <i>x</i> -axis			
	and 8 units up on the y-			
	axis].			

How is the Initial Precursor related to the Target? In order to model linear functions, students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "this set has all red objects; this set has all blue", "these fidgets are big; these fidgets are small"), and the student observes, feels, or otherwise interacts with them. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different. Educators provide sorting activities that allow learners to isolate specific attributes while recognizing likenesses and differences among objects. Educators also provide activities that reinforce the skill of ordering (e.g., arrangement of objects from largest to smallest, sequencing daily events, and counting).

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

M.EE.HS.F.LE.1-3 Model a simple linear function such as y = mx to show that these functions increase by equal amounts over equal intervals.

