Essential Element, Linkage Levels, and Mini-Map

Math: Grade 8
M.EE.8.EE.1

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.8.EE.1 Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^2 \times 3^{-5} = 3^{-3} = 1/3^3 = 1/27$ | M.EE.8.EE.1 Identify the meaning of an exponent (limited to exponents of 2 and 3) | **Initial Precursor:**
 - Combine
 - Combine sets
 - Demonstrate the concept of addition

Distal Precursor:
 - Explain repeated addition
 - Represent repeated addition with a model
 - Solve repeated addition problems

Proximal Precursor:
 - Demonstrate the concept of multiplication
 - Explain multiplication problems
 - Explain product

Target:
 - Recognize exponents

Successor:
 - Explain product of powers property of exponents
 - Apply zero exponent property
 - Explain power of product property of exponents
 - Explain quotient of powers property of exponents

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP: Initial Precursor
- DP: Distal Precursor
- PP: Proximal Precursor
- T: Target
- SP: Supporting
- S: Successor
- UN: Untested
M.EE.8.EE.1 Identify the meaning of an exponent (limited to exponents of 2 and 3)
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 8

M.EE.8.EE.2

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.8.EE.2 Use square root and cube root symbols to represent solutions to equations of the form \(x^2 = p\) and \(x^3 = p\), where \(p\) is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that \(\sqrt{2}\) is irrational | M.EE.8.EE.2 Identify a geometric sequence of whole numbers with a whole number common ratio | **Initial Precursor:**
- Classify
- Contrast objects
- Order objects

Distal Precursor:
- Recognize symbolic patterns
- Recognize sequence

Proximal Precursor:
- Recognize shrinking patterns
- Recognize growing patterns

Target:
- Recognize geometric sequences

Successor:
- Recognize the recursive rule for geometric sequences

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP Initial Precursor
- SP Supporting
- DP Distal Precursor
- S Successor
- PP Proximal Precursor
- UN Untested
- T Target
M.EE.8.EE.2 Identify a geometric sequence of whole numbers with a whole number common ratio
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 8

M.EE.8.EE.7

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.8.EE.7 Solve linear equations in one variable | M.EE.8.EE.7 Solve simple algebraic equations with one variable using addition and subtraction | Initial Precursor:
- Combine sets
- Partition sets
Distal Precursor:
- Demonstrate the concept of addition
- Demonstrate the concept of subtraction
Proximal Precursor:
- Determine the unknown in an addition equation
- Determine the unknown in a subtraction equation
Target:
- Solve linear equations in one variable
Successor:
- Solve linear inequalities in 1 variable |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP Initial Precursor
- SP Supporting
- DP Distal Precursor
- S Successor
- PP Proximal Precursor
- UN Untested
- T Target
M.EE.8.EE.7 Solve simple algebraic equations with one variable using addition and subtraction
Essential Element, Linkage Levels, and Mini-Map
Math: Grade 8
M.EE.8.F.1-3

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| **M.8.F.1** Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output; **M.8.F.2** Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions); **M.8.F.3** Interpret the equation \(y = mx + b \) as defining a linear function, whose graph is a straight line; give examples of functions that are not linear | **M.EE.8.F.1-3** Given a function table containing at least 2 complete ordered pairs, identify a missing number that completes another ordered pair (limited to linear functions) | **Initial Precursor:**
- Arrange objects in pairs
- Order objects
Distal Precursor:
- Recognize growing patterns
- Recognize shrinking patterns
Proximal Precursor:
- Extend a symbolic pattern by applying the rule
- Explain coordinate pairs (ordered pairs)
Target:
- Generate ordered pairs from 2 distinct numerical patterns
Successor:
- Recognize covariation
- Recognize correspondence (function) |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP Initial Precursor
- SP Supporting
- DP Distal Precursor
- S Successor
- PP Proximal Precursor
- UN Untested
- T Target
M.EE.8.F.1-3 Given a function table containing at least 2 complete ordered pairs, identify a missing number that completes another ordered pair (limited to linear functions)
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 8

M.EE.8.F.4

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.8.F.4</td>
<td>M.EE.8.F.4</td>
<td></td>
</tr>
</tbody>
</table>

Initial Precursor:
- Arrange objects in pairs
- Order objects

Distal Precursor:
- Generate ordered pairs from 2 distinct numerical patterns
- Extend a symbolic pattern by applying the rule

Proximal Precursor:
- Recognize direction of covariation
- Recognize covariation

Target:
- Describe the function rule from the list of ordered pairs given in a table
- Describe the function rule from a given graph

Successor:
- Recognize function

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:
- **IP** Initial Precursor
- **SP** Supporting
- **DP** Distal Precursor
- **S** Successor
- **PP** Proximal Precursor
- **UN** Untested
- **T** Target
M.EE.8.F.4 Determine the values or rule of a function using a graph or a table
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 8
M.EE.8.G.1

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.8.G.1 Verify | M.EE.8.G.1 Recognize translations, rotations, and reflections of shapes | **Initial Precursor:**
 - Recognize attribute values
 Distal Precursor:
 - Recognize the defining attributes of a shape
 - Recognize the non-defining attributes of a shape
 Proximal Precursor:
 - Explain transformations
 Target:
 - Recognize translation
 - Recognize reflection
 - Recognize rotation
 Successor:
 - Explain the properties of lines and line segments in transformations
 - Explain the properties of angles in transformations
 - Explain the properties of parallel lines in transformations |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- **IP** Initial Precursor
- **SP** Supporting
- **DP** Distal Precursor
- **S** Successor
- **PP** Proximal Precursor
- **UN** Untested
- **T** Target
M.EE.8.G.1 Recognize translations, rotations, and reflections of shapes
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 8

M.EE.8.G.2

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.B.G.2 Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them | M.EE.8.G.2 Identify shapes that are congruent | **Initial Precursor:**
- Recognize same
- Recognize different

Distal Precursor:
- Match the same two-dimensional shape with same size and same orientation
- Match the same two-dimensional shape with different sizes and same orientation

Proximal Precursor:
- Describe attributes of shapes
- Analyze shapes to identify common attributes
- Explain attribute relationships between shapes

Target:
- Recognize congruent figures

Successor:
- Explain the relationship between congruent figures and transformation
- Use a sequence of transformations to describe congruence of 2 given figures

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP Initial Precursor
- SP Supporting
- DP Distal Precursor
- S Supporting
- PP Proximal Precursor
- UN Untested
- T Target
M.EE.8.G.2 Identify shapes that are congruent

- F-2: recognize same
- F-76: recognize different
- F-9: match the same two-dimensional shape with same size and same orientation
- F-48: match the same two-dimensional shape with different sizes and same orientation
- F-41: match the same two-dimensional shape with same sizes and different orientations
- F-17: match the same two-dimensional shapes with different size and different orientation
- M-2635: classify same two-dimensional shapes with different size and/or different orientation
- M-2634: classify same two-dimensional shapes with same size and same orientation
- M-130: recognize squares
- M-131: recognize circles
- M-132: recognize triangles
- M-133: recognize rectangles
- M-119: describe attributes of shapes
- M-120: analyze shapes to identify common attributes
- M-687: explain attribute relationships between shapes
- M-1487: recognize congruent figures
- M-1489: explain the relationship between congruent figures and transformation
- M-1490: use a sequence of transformations to describe congruence of 2 given figures
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 8

M.EE.8.G.4

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.8.G.4 Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them | M.EE.8.G.4 Identify similar shapes with and without rotation | Initial Precursor:
- Recognize same
- Recognize different
Distal Precursor:
- Match the same three-dimensional shapes with different size and same orientation
- Match the same two-dimensional shapes with different sizes and same orientation
Proximal Precursor:
- Recognize similar figures
- Recognize rotation
Target:
- Explain the relationship between similar figures and transformation
Successor:
- Use a sequence of transformations to describe similarity of 2 given figures |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP: Initial Precursor
- SP: Supporting
- DP: Distal Precursor
- S: Successor
- PP: Proximal Precursor
- UN: Untested
- T: Target
M.EE.8.G.4 Identify similar shapes with and without rotation
<table>
<thead>
<tr>
<th>Grade-Level Standards</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| **M.8.G.5** Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles | **M.EE.8.G.5** Compare any angle to a right angle and describe the angle as greater than, less than, or congruent to a right angle | **Initial Precursor:**
- Recognize attribute values
Distal Precursor:
- Recognize angle
Proximal Precursor:
- Recognize obtuse angles
- Recognize acute angles
- Recognize right angles
Target:
- Compare angles to a right angle
Successor:
- Explain complementary angles |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:
- **IP** Initial Precursor
- **SP** Supporting
- **DP** Distal Precursor
- **S** Successor
- **PP** Proximal Precursor
- **UN** Untested
- **T** Target
M.EE.8.G.5 Compare any angle to a right angle and describe the angle as greater than, less than, or congruent to a right angle.
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 8

M.EE.8.G.9

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.8.G.9 Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems | M.EE.8.G.9 Use the formulas for perimeter, area, and volume to solve real-world and mathematical problems (limited to perimeter and area of rectangles and volume of rectangular prisms) | **Initial Precursor:**
• Recognize attribute values
Distal Precursor:
• Recognize measurable attributes
Proximal Precursor:
• Explain volume
• Explain area
• Explain length
• Explain perimeter
Target:
• Calculate volume of right rectangular prisms with formula
• Calculate area for rectangles with formula
• Calculate the perimeter of parallelograms with formula
Successor:
• Solve word problems involving volume of rectangular prisms
• Solve word problems involving area of rectangles
• Solve word problems involving perimeter of polygons |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>Initial Precursor</td>
</tr>
<tr>
<td>DP</td>
<td>Distal Precursor</td>
</tr>
<tr>
<td>PP</td>
<td>Proximal Precursor</td>
</tr>
<tr>
<td>T</td>
<td>Target</td>
</tr>
<tr>
<td>SP</td>
<td>Supporting</td>
</tr>
<tr>
<td>S</td>
<td>Successor</td>
</tr>
<tr>
<td>UN</td>
<td>Untested</td>
</tr>
</tbody>
</table>

M.EE.8.G.9 Copyright © 2018 University of Kansas Center for Research. All rights reserved.
M.EE.8.G.9 Use the formulas for perimeter, area, and volume to solve real-world and mathematical problems (limited to perimeter and area of rectangles and volume of rectangular prisms)
ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP
MATH: GRADE 8
M.EE.8.NS.1

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| **M.8.NS.1**. Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert expansion which repeats eventually into a rational number | **M.EE.8.NS.1** Subtract fractions with like denominators (halves, thirds, fourths, and tenths) with minuends less than or equal to one | **Initial Precursor:**
- Recognize separateness
- Recognize subset
Distal Precursor:
- Recognize parts of a given whole or unit
Proximal Precursor:
- Decompose a fraction into a sum of unit fractions with the same denominator
- Explain the concept of addition and subtraction of fractions
Target:
- Subtract fractions with common denominators
Successor:
- Add or subtract fractions with denominators of 10 and 100 |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>Initial Precursor</td>
</tr>
<tr>
<td>DP</td>
<td>Distal Precursor</td>
</tr>
<tr>
<td>PP</td>
<td>Proximal Precursor</td>
</tr>
<tr>
<td>SP</td>
<td>Supporting</td>
</tr>
<tr>
<td>S</td>
<td>Successor</td>
</tr>
<tr>
<td>UN</td>
<td>Untested</td>
</tr>
<tr>
<td>T</td>
<td>Target</td>
</tr>
</tbody>
</table>
M.EE.8.NS.1 Subtract fractions with like denominators (halves, thirds, fourths, and tenths) with minuends less than or equal to one
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 8

M.EE.8.NS.2.A

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.8.NS.2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., \(\pi^2\)) | M.EE.8.NS.2.a Express a fraction with a denominator of 100 as a decimal | Initial Precursor:
- Recognize separateness
- Recognize set
Distal Precursor:
- Partition sets into equal subsets
- Explain unit fraction
Proximal Precursor:
- Explain the decimal point
- Represent a fraction with a denominator of 10 as a decimal
Target:
- Represent a fraction with a denominator of 100 as a decimal
Successor:
- Compare two decimals to the tenths using symbols
- Compare two decimals to hundredths using symbols |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- **IP** Initial Precursor
- **SP** Supporting
- **DP** Distal Precursor
- **S** Successor
- **PP** Proximal Precursor
- **UN** Untested
- **T** Target
M.EE.8.NS.2.a Express a fraction with a denominator of 100 as a decimal
M.EE.8.NS.2.b

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.8.NS.2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^2) | M.EE.8.NS.2.b Compare quantities represented as decimals in real world examples to hundredths | Initial Precursor:
• Recognize separateness
Distal Precursor:
• Recognize one tenth in a set model
• Recognize tenths in a set model
Proximal Precursor:
• Represent a decimal to tenths as a fraction
• Represent a decimal to hundredths as a fraction
Target:
• Compare two decimals to hundredths using symbols
Successor:
• Compare two decimals to thousandths and beyond using symbols |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP: Initial Precursor
- DP: Distal Precursor
- PP: Proximal Precursor
- T: Target
- SP: Supporting
- S: Successor
- UN: Untested
M.EE.8.NS.2.b Compare quantities represented as decimals in real world examples to hundredths
Essential Element, Linkage Levels, and Mini-Map
Math: Grade 8
M.EE.8.SP.4

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.8.SP.4</td>
<td>M.EE.8.SP.4</td>
<td></td>
</tr>
<tr>
<td>Understand that</td>
<td>Construct a graph or</td>
<td></td>
</tr>
<tr>
<td>patterns of</td>
<td>table from given</td>
<td></td>
</tr>
<tr>
<td>association can also</td>
<td>categorical data and</td>
<td></td>
</tr>
<tr>
<td>be seen in bivariate</td>
<td>compare data</td>
<td></td>
</tr>
<tr>
<td>categorical data</td>
<td>categorized in the</td>
<td></td>
</tr>
<tr>
<td>by displaying</td>
<td>graph or table</td>
<td>Initial Precursor:</td>
</tr>
<tr>
<td>frequencies and</td>
<td>used relative frequencies</td>
<td></td>
</tr>
<tr>
<td>relative frequencies in</td>
<td></td>
<td>- Classify</td>
</tr>
<tr>
<td>a two-way table.</td>
<td>and relative frequencies</td>
<td></td>
</tr>
<tr>
<td>Construct and</td>
<td>calculated for rows or</td>
<td>- Order objects</td>
</tr>
<tr>
<td>interpret a two-way</td>
<td>columns to describe</td>
<td></td>
</tr>
<tr>
<td>table summarizing</td>
<td>possible association</td>
<td></td>
</tr>
<tr>
<td>data on two</td>
<td>between the two</td>
<td></td>
</tr>
<tr>
<td>categorical variables</td>
<td>categorical variables</td>
<td></td>
</tr>
<tr>
<td>collected from the</td>
<td>collected from the</td>
<td></td>
</tr>
<tr>
<td>same subjects. Use</td>
<td>same subjects. Use</td>
<td></td>
</tr>
<tr>
<td>relative frequencies</td>
<td>relative frequencies</td>
<td></td>
</tr>
<tr>
<td>calculated for rows</td>
<td>calculated for rows</td>
<td></td>
</tr>
<tr>
<td>or columns to</td>
<td>or columns to</td>
<td></td>
</tr>
<tr>
<td>describe possible</td>
<td>describe possible</td>
<td></td>
</tr>
<tr>
<td>association between</td>
<td>association between the</td>
<td></td>
</tr>
<tr>
<td>the two variables.</td>
<td>two variables.</td>
<td></td>
</tr>
<tr>
<td>For example, collect</td>
<td>For example, collect</td>
<td></td>
</tr>
<tr>
<td>data from students</td>
<td>data from students in</td>
<td></td>
</tr>
<tr>
<td>in your class on</td>
<td>your class on whether</td>
<td></td>
</tr>
<tr>
<td>whether or not they</td>
<td>or not they have a</td>
<td></td>
</tr>
<tr>
<td>have a curfew on</td>
<td>curfew on school nights</td>
<td></td>
</tr>
<tr>
<td>school nights and</td>
<td>and whether or not they</td>
<td></td>
</tr>
<tr>
<td>whether or not they</td>
<td>have assigned chores</td>
<td></td>
</tr>
<tr>
<td>have assigned chores</td>
<td>at home. Is there</td>
<td></td>
</tr>
<tr>
<td>at home. Is there</td>
<td>evidence that those</td>
<td></td>
</tr>
<tr>
<td>evidence that those</td>
<td>who have a curfew</td>
<td></td>
</tr>
<tr>
<td>who have a curfew</td>
<td>also tend to have</td>
<td></td>
</tr>
<tr>
<td>also tend to have</td>
<td>chores?</td>
<td></td>
</tr>
<tr>
<td>chores?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Target:
- Use graphs to read between the data
- Use tally chart to read between the data
- Represent data using bar graph
- Represent data using picture graph
- Represent data using line plot (dot plot)
- Represent data using tally charts

Successor:
- Use graphs to read beyond the data
- Use tally charts to read beyond the data

Initial Precursor:
- Classify
- Order objects

Distal Precursor:
- Recognize the structure of a bar graph
- Recognize the structure of a picture graph
- Recognize the structure of a line plot (dot plot)
- Recognize the structure of tally chart

Proximal Precursor:
- Use bar graphs to read the data
- Use picture graphs to read the data
- Use line plots (dot plots) to read the data
- Use tally charts to read the data
without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>Initial Precursor</td>
</tr>
<tr>
<td>DP</td>
<td>Distal Precursor</td>
</tr>
<tr>
<td>PP</td>
<td>Proximal Precursor</td>
</tr>
<tr>
<td>SP</td>
<td>Supporting</td>
</tr>
<tr>
<td>S</td>
<td>Successor</td>
</tr>
<tr>
<td>UN</td>
<td>Untested</td>
</tr>
<tr>
<td>T</td>
<td>Target</td>
</tr>
</tbody>
</table>
M.EE.8.SP.4 Construct a graph or table from given categorical data and compare data categorized in the graph or table