

Mini-Map for M.EE.8.NS.2.a

Subject: Mathematics The Number System (NS) Grade: 8

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.8.NS.2.a Express a fraction with a denominator of 100 as a decimal.	M.8.NS.2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the
	value of expressions (e.g., π^2).

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Divide a set (e.g., 8	Communicate	Represent a fraction	Compare two decimals
understanding of	crayons) into two or	understanding that a	with a denominator of	to the tenths or
"separateness" by	more equal subsets	decimal point is a dot	100 as a decimal (e.g.,	hundredths place using
recognizing objects that	(e.g., two subsets of 4	that separates the	52/100 as 0.52).	symbols (i.e., =, <, >) to
are not joined together.	crayons). Demonstrate	whole number from the		show that one is greater
Communicate	understanding of a unit	fractional part of a		than, less than, or equal
understanding of a set	fraction (e.g., 1/4) as	number. Represent a		to the other.
by recognizing a group	the quantity formed by	fraction with a		
of objects sharing an	one part when a whole	denominator of 10 as a		
attribute.	is partitioned into <i>n</i>	decimal.		
	(e.g., 4) equal parts.			

How is the Initial Precursor related to the Target? Converting a fraction to a decimal requires a student to be able to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. As educators present a set, they label it (e.g., two balls, one marker, three CDs), count the items, label it again, and encourage students to use numerals to label and count the separate sets. Use tools like the ten-frame to point out whole and parts (e.g., a row of 5 dots and a row of 4 dots are parts or subsets of 9).

How is the Distal Precursor related to the Target? As students become more adept at tracking discrete objects, they will begin working on one-to-one distribution of objects to person, objects to objects, and objects to available space (e.g., giving each person in the group a pencil; given four counters, they would line up four more counters in front of or on top of the first set; given three chairs at a table, the student would place a cup on the table for each available chair). As students understanding of one-to-one distribution develops, provide students many opportunities to recognize equivalence in sets with same items and then sets with differing items. As students work on all these skills and concepts, continue to draw their attention to parts and wholes.

Instructional Resources

Released Testlets

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

Link to Text-Only Map

M.EE.8.NS.2.a Express a fraction with a denominator of 100 as a decimal.

Mini-Map for M.EE.8.NS.2.b

Subject: Mathematics The Number System (NS) Grade: 8

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.8.NS.2.b Compare quantities represented as decimals in real-world examples to hundredths.	M.8.NS.2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^2).

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize separateness	Recognize a set model	Represent a decimal to	Compare two decimals	Compare two decimals
as objects that are not	that represents one-	tenths (e.g., 5.2) or	to the hundredths place	to the thousandths
joined together.	tenth or multiple	hundredths (e.g., 7.68)	using symbols (i.e., =, <,	(e.g., 1.050 and 1.762)
	tenths, such as two-	as a fraction (i.e., 52/10	>) to show that one is	using symbols (i.e., =, <,
	tenths, five-tenths, or	and 768/100,	greater than, less than,	>) to show that one is
	eight-tenths.	respectively).	or equal to the other.	greater than, less than,
				or equal to the other
				(e.g., 1.050 < 1.762).

How is the Initial Precursor related to the Target?

Representing fractions as decimals requires a student to be able to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. As educators present a set, they label it (e.g., two balls, one marker, three CDs), count the items, label it again, and encourage students to use numerals to label and count the separate sets. Use tools like the ten-frame to point out whole and parts (e.g., a row of 5 dots and a row of 4 dots are parts or subsets of 9).

How is the Distal Precursor related to the Target?

As students begin to understand labeling, counting small sets, and recognizing wholes and parts of objects and sets, use set models to provide a wide variety of sets of 10 to model tenths (e.g., for individual shapes to match the fraction, say, "I have 10 cubes in my bag, 1/10 of them are blue.").

Instructional Resources

Released Testlets

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

Link to Text-Only Map

M.EE.8.NS.2.b Compare quantities represented as decimals in real-world examples to hundredths.

	Мар Кеу	
IP DP PP T S UN	Initial Precursor Distal Precursor Proximal Precursor Target Successor Untested	
Boxe node	es indicate tested es	

Mini-Map for M.EE.8.EE.1

Subject: Mathematics Expressions and Equations (EE) Grade: 8

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.8.EE.1 Identify the meaning of an exponent (limited to	M.8.EE.1 Know and apply the properties of integer exponents
exponents of 2 and 3).	to generate equivalent numerical expressions.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Combine two or more	Communicate	Demonstrate	Recognize exponents	Explain that when
sets of objects to create	understanding that in	multiplication by	[i.e., "b", in expressions	multiplying two base
a new set. Combine two	repeated addition	combining multiple sets	<i>a^b,</i> where " <i>b</i> " indicates	numbers raised to the
or more parts (e.g.,	problems, a single	containing the same	the number of times	same power, the
toys, shapes) to form a	numerical value is	number of objects.	the base number (" <i>a</i> ")	problem equals the
new whole.	added repeatedly (e.g.,	Communicate	is to be multiplied (e.g.,	product of the base
Demonstrate an	6 + 6 + 6) and that one	understanding that the	$2^3 = 2 \times 2 \times 2$].	numbers with the same
understanding of	way to add a number a	number of sets times		exponent, and that
addition by combining	given number of times	the number of objects		when multiplying (or
the objects of two or	is by using skip-counting	in each set equals the		dividing) two base
more sets.	as a strategy (e.g., 6 + 6	total number of objects.		numbers raised to
	+ 6 can be added as 6,	Communicate		different powers, the
	12, 18). Use models,	understanding that in		problem equals the
	such as mathematical	multiplication, one		product (or quotient) of
	equations (e.g., 5 + 5 +	factor represents the		the base numbers
	5 = 15), sets of	number of elements in		raised to the sum (or
	manipulatives, or	a group, the second		difference) of the
	number line diagrams	factor represents the		exponents. Solve for
	to represent a repeated	number of groups, and		when a nonzero
	addition problem.	the product is the		number is raised to the

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
		number obtained by		0 power, where the
		multiplying two factors.		answer is always one.

How is the Initial Precursor related to the Target? Recognizing exponents requires a student to be able to recognize that two or more sets or groups of items exist. Educators can work on this skill using a variety of sets. Help students recognize when items are grouped together into a set and when they are separated out. The educator presents a set, labels it (e.g., two balls, one marker, three CDs), counts the items, labels it again, and encourages students to use numbers to label and count the separate sets. Then, combine the sets, give it a new label, and count the set.

How is the Distal Precursor related to the Target? As students' understanding of labeling and counting sets develops, they will begin working on adding items to a set and combining sets to create a new set. Additionally, students will work on developing an understanding of equal shares by actively participating in one-to-one distribution of objects to person, objects to objects, and objects to available space (e.g., giving each person in the group a pencil; given four counters, they would line up four more counters in front of or on top of the first set; given three chairs at a table, the student would place a cup on the table for each available chair). As students learn to work with sets and connect their understanding of equal shares to sets, educators can provide students experience with combining multiple sets (e.g., 3 sets with 4 counters each) and represent the problem (e.g., 4 + 4 + 4 = ?). Students will also learn to represent the problem using a pencil or their communication system (e.g., the student is shown 4 equal sets each with 2 counters. The student counts the first set and writes a 2 or indicates 2, then writes or indicates the plus sign. The student repeats for all 4 sets and then indicates the equal sign and solves the problem.).

Instructional Resources

Released Testlets
See the Guide to Practice Activities and Released Testlets.
Using Untested (UN) Nodes

Link to Text-Only Map

M.EE.8.EE.1 Identify the meaning of an exponent (limited to exponents of 2 and 3).

Mini-Map for M.EE.8.NS.1 Subject: Mathematics The Number System (NS) Grade: 8

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.8.NS.1 Subtract fractions with like denominators (halves,	M.8.NS.1 Know that numbers that are not rational are called
thirds, fourths, and tenths) with minuends less than or equal to	irrational. Understand informally that every number has a
one.	decimal expansion; for rational numbers show that the decimal
	expansion repeats eventually, and convert a decimal expansion
	which repeats eventually into a rational number.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Recognize each object	Communicate	Subtract two fractions	Add or subtract two
understanding of	as the part of a whole	understanding that	with common	fractions where one
"separateness" by	or unit when shown a	when fractional parts	denominators (e.g., 4/5	fraction has a
recognizing objects that	whole or unit	are added, it produces a	- 1/5 = 3/5).	denominator of 10 and
are not joined together.	containing a group of	larger portion of the		one has a denominator
Communicate	objects.	whole, and that when		of 100 (e.g., 5/10 +
understanding of a		fractional parts are		1/100 = 50/100 + 1/100
subset by recognizing a		separated, it results in a		= 51/100).
subset as a set or group		smaller portion of the		
of objects within a		whole. Decompose		
larger set that share an		fractions into sums of		
attribute.		unit fractions with the		
		same denominator		
		(e.g., 3/7 = 1/7 + 1/7 +		
		1/7).		

How is the Initial Precursor related to the Target?

Subtracting fractions requires a student to be able to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. As educators present a set, they label it (e.g., two balls, one marker, three CDs), count the items, label it again, and encourage students to use numerals to label and count the separate sets. Use tools like the ten-frame to point out whole and parts (e.g., a set of 9 is part of 10). How is the Distal Precursor related to the Target? As students work toward greater understanding of sets, educators will provide students with many set models (see below) of fractions using the same unit fraction, either halves, thirds, fourths, or tenths. Students will work on identifying the whole.

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

See the document <u>Using Mini-Maps to Plan Instruction</u>.

Link to Text-Only Map

M.EE.8.NS.1 Subtract fractions with like denominators (halves, thirds, fourths, and tenths) with minuends less than or equal to one.

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.8.G.1 Recognize translations, rotations, and reflections of	M.8.G.1 Verify experimentally the properties of rotations,
shapes.	reflections, and translations.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize attributes or	Recognize defining	Explain that a	Recognize the figure	Explain that in
characteristics of an	attributes (e.g., number	transformation of a	that is translated from	transformations (i.e.,
object, such as color,	of sides, number of	shape (e.g., translation	the original view as a	rotations, reflections,
orientation, length,	angles) versus	[slide], reflection [flip],	translation (slide),	and translations),
width, and weight.	nondefining attributes	rotation [turn]) does	reflected from the	parallel lines remain
	of a shape (e.g., color,	not change the size,	original view as a	parallel, lines remain
	size, orientation).	area, or shape of the	reflection (flip), or	lines, angle
		figure.	rotated from the	measurements remain
			original view as a	constant, and line
			rotation (turn).	segments remain line
				segments of the same
				length.

How is the Initial Precursor related to the Target? Being able to recognize shapes given certain conditions requires a student to recognize when basic objects and shapes are the same or different. Work on this understanding by providing students with a shape and naming it (e.g., this is a square). Then provide multiple examples of the same shape so students

can make comparisons (e.g., **a**), focusing student attention on the characteristics that make this a particular shape (e.g., a square has 4 sides that are the same size). As students explore shapes, label them and describe them as "same" or "different."

NOTE: When presenting the same shape for comparison, do use shapes with different colors, textures, sizes, and orientation so that students understand the attribute that makes it that shape (e.g., 4 sides that are the same size).

How is the Distal Precursor related to the Target? Now that students have experience identifying shapes, provide instruction that focuses on the attribute of a given shape and making comparisons with other shapes. Educators should take care to use the names of the shapes while defining and describing the attributes. While students do not need to say the shape names, they do need to learn what makes a shape a shape (e.g., a square has four equal straight sides, a triangle has three straight sides, a cone is an object that narrows from a circular base to a point, and a rectangle does not have curves).

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

See the document <u>Using Mini-Maps to Plan Instruction</u>.

M.EE.8.G.1 Recognize translations, rotations, and reflections of shapes.

Mini-Map for M.EE.8.G.2 Subject: Mathematics Geometry (G) Grade: 8

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.8.G.2 Identify shapes that are congruent.	M.8.G.2 Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize "same" as	Match a familiar shape	Describe attributes or	Recognize two shapes	Communicate
the object that shares	(e.g., square, circle,	characteristics of the	that are congruent with	understanding that two
all of the same	triangle, rectangle) to a	shape (e.g., size,	or without rotation or	shapes are congruent if
attributes as other	congruent shape (i.e.,	orientation, the number	reflection.	the second can be
objects in a group.	the shape with same	of sides). Compare		obtained from the first
Recognize "different" as	size and orientation), or	shapes and identify		by a sequence of
the object that shares	match a familiar shape	attributes shared by the		rotations, reflections,
some or none of the	(e.g., square, circle,	two shapes (e.g., a		and translations.
attributes as other	triangle, rectangle) to a	rectangle and a square		Describe a sequence of
objects in a group.	similar shape (i.e., the	each have four sides).		transformations that
	shape shown in a			would result in one
	different size but same			figure being
	orientation).			superimposed precisely
				over the other figure.

How is the Initial Precursor related to the Target? Being able to recognize congruent figures requires a student to recognize when basic objects and shapes are the same or different. Work on this understanding by providing students with a shape and naming it (e.g., "this is a square"). Then, provide multiple examples of the same shape so students can make comparisons, focusing student attention on the characteristics make this a particular shape (e.g., a square has 4 sides that are the same size). As students explore shapes, label them and describe them as same or different.

NOTE: When presenting the same shape for comparison, do use shapes with different colors, textures, sizes, and orientation so that students understand the attribute that makes it that shape (e.g., 4 sides that are the same size).

How is the Distal Precursor related to the Target? As students develop an understanding of same and different shapes, provide opportunities for students to match or group the same shapes based on the shape size (e.g., "this is a big square", "this is a little square"). As students progress with identifying the size of shapes, the educator can begin to introduce different orientations of the shape.

NOTE: As new attributes (e.g., size and orientation) are introduced, be sure to support the student in remembering that the attribute doesn't change the name of the shape.

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

See the document <u>Using Mini-Maps to Plan Instruction</u>.

M.EE.8.G.2 Identify shapes that are congruent.

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.8.G.4 Identify similar shapes with and without rotation.	M.8.G.4 Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize "same" as	Match two 2-	Recognize two-	Communicate	Describe a sequence of
the object that shares	dimensional or 3-	dimensional and three-	understanding that two	transformations (e.g.,
all of the same	dimensional shapes	dimensional shapes that	shapes are similar if the	dilations, rotations,
attributes as other	(e.g., squares,	are similar. Recognize	second can be obtained	reflections, translations)
objects in a group.	rectangles, circles,	rotation as the	from the first by a	that would result in the
Recognize "different" as	spheres, rectangular	transformation in which	sequence of dilations,	final shape or figure
the object that shares	prisms, cubes,	a shape or figure is	rotations, reflections, or	being similar to the
some or none of the	pyramids) that are	turned.	translations.	original shape or figure.
attributes as other	different sizes and have			
objects in a group.	the same orientation.			

How is the Initial Precursor related to the Target? Being able to recognize congruent figures requires a student to recognize when basic objects and shapes are the same or different. Work on this understanding by providing students with a shape and naming it (e.g., "this is a square"). Then, provide multiple examples of the same shape so students can make comparisons, focusing student attention on the characteristics that make this a particular shape (e.g., a square has 4 sides that are the same size). As students explore shapes, label them and describe them as same or different.

NOTE: When presenting the same shape for comparison, do use shapes with different colors, textures, sizes, and orientation so that students understand the attribute that makes it that shape (e.g., 4 sides that are the same size).

How is the Distal Precursor related to the Target? As students develop an understanding of same and different shapes, provide opportunities for students to match or group the same two- and three-dimensional shapes based on the shape size (e.g., "this is a big square," "this is a little square"). As students progress with identifying the size of two- and threedimensional shapes, the educator can begin to introduce different orientations of the shape.

NOTE: As new attributes (e.g., size and orientation) are introduced, be sure to support the student in remembering that the attribute doesn't change the name of the shape.

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

See the document <u>Using Mini-Maps to Plan Instruction</u>.

Mini-Map for M.EE.8.G.5 Subject: Mathematics Geometry (G) Grade: 8

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.8.G.5 Compare any angle to a right angle, and describe the angle as greater than, less than, or congruent to a right angle.	M.8.G.5 Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize attributes or	Recognize an angle as a	Recognize angles that	Compare the measure	Explain that
characteristics of an	figure formed by two	are either acute,	of an angle to the	complementary angles
object, such as color,	rays sharing one	obtuse, or right.	measure of a right	are pairs of angles with
orientation, length,	endpoint.		angle, and	measures that add up
width, and weight.			communicate whether	to 90 degrees (e.g., a
			the measure of the	40-degree angle and 50-
			angle is greater than,	degree angle).
			less than, or congruent	
			to the measure of the	
			right angle.	

How is the Initial Precursor related to the Target? In order to recognize angles, students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "this is a circle, and it does not have any sides," "this is a rectangle, and it has four sides") and the student observes, feels, or otherwise interacts with the shapes.

How is the Distal Precursor related to the Target?

At this level, educators are providing students with specific vocabulary (line, line segment, point, and ray) that are used to form an angle. These are all denoted by certain characteristics (a line has arrows on both ends; a line segment includes both endpoints; a point is a dot on a graph, a line, line segment, or a number line; a ray is a line that has a well-defined starting point). Educators should take care to use the names "line," "line segment," "point," and "ray" while defining and describing the angles. While students do not need to say the names, they do need to learn their meaning. Educators should teach these attributes within the context of working with angles.

Instructional Resources

Released Testlets

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

Link to Text-Only Map

M.EE.8.G.5 Compare any angle to a right angle, and describe the angle as greater than, less than, or congruent to a right angle.

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.8.G.9 Use the formulas for perimeter, area, and volume to	M.8.G.9 Know the formulas for the volumes of cones, cylinders,
solve real-world and mathematical problems (limited to	and spheres, and use them to solve real-world and
perimeter and area of rectangles and volume of rectangular	mathematical problems.
prisms).	

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize attributes or	Recognize attributes or	Communicate	Calculate area of a	Solve word problems
characteristics of an	characteristics of an	understanding that	rectangle using the area	where the unknown
object, such as color,	object that are	length is the distance	formula (area = length x	quantity is obtained
orientation, length,	measurable (e.g.,	between the two points	width), perimeter of a	using the volume of a
width, and weight.	length, weight, time).	that define a line	parallelogram using the	rectangular prism, area
		segment, perimeter is	perimeter formula	of a rectangle, or
		the distance that	(perimeter = 2 <i>a</i> + 2 <i>b</i>),	perimeter of a polygon.
		surrounds a plane area,	and volume of a prism	
		area is the amount of	using the volume	
		space contained within	formula (volume =	
		the outline or boundary	height x length x width).	
		of a two-dimensional		
		object or figure, and		
		volume is the space		
		enclosed by a shape or		
		an object.		

How is the Initial Precursor related to the Target? In order to calculate volume, area, and perimeter with formulas, students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "this is a circle, which has no corners, so we can go all the way around without stopping," "this is a rectangle, which has four corners, two long sides, and two short sides") and the student observes, feels, or otherwise interacts with the shapes. Students also work on counting small units, recognizing that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. As educators present sets, they label them (e.g., two balls, one bear, three blocks), count the items, label them again, and encourage students to use numbers to label and count the separate sets.

How is the Distal Precursor related to the Target?

As students develop their attention to objects and notice the difference between objects, they will begin working on recognizing measurable attributes. Students need lots of experience making direct comparisons between objects. Educators should take care to use attribute words like "big"/"small," "tall"/"short," "longer"/"shorter" while defining and demonstrating their meaning. While students do not need to say these words, they do need to learn the meanings.

Instructional Resources

Released Testlets			
See the Guide to Practice Activities and Released Testlets.			
Lising Lintested (LINI) Nodes			
Using Untested (UN) Nodes			
See the document Using Mini-Maps to Plan Instruction.			

Link to Text-Only Map

M.EE.8.G.9 Use the formulas for perimeter, area, and volume to solve real-world and mathematical problems (limited to perimeter and area of rectangles and volume of rectangular prisms).

Mini-Map for M.EE.8.SP.4

Subject: Mathematics Statistics and Probability (SP) Grade: 8

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.8.SP.4 Construct a graph or table from given categorical data, and compare data categorized in the graph or table.	M.8.SP.4 Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Arrange objects in a	Recognize the structure	Answer questions by	Represent data on bar	Draw inferences or
specific order or by	of bar graphs, picture	lifting information from	graphs, picture graphs,	make predictions by
following a specific rule	graphs, line plots, and	a bar graph, picture	line plots, and tally	interpreting
(e.g., arranging three	tally charts, such as the	graph, line plot, and	charts. Use bar graphs,	information presented
pencils by increasing	title and labels for the	tally chart and	picture graphs, line	on a bar graph, picture
length). Group like	x- and y-axes.	understand the	plots, and tally charts to	graph, line plot, or tally
items by attributes and	Understand that bars	information	answer questions (e.g.,	chart (e.g., on the bar
distinguish between like	are used to display data	represented on the	how many, most, least)	graph representing the
items based on simple	on bar graphs.	graph (e.g., in the graph	that require	number of pizzas
characteristics such as	Understand that	representing students'	interpretation and	required for a certain
shape, size, texture, and	pictures, symbols, or	favorite ice cream, how	integration of	number of people,
numerical pattern.	geometric figures are	many students like	information presented	predict the number of
	used to display data on	strawberry ice cream?	on the graph.	pizzas needed for 20
	picture graphs.	How many students like		people).
	Understand that on a	chocolate ice cream?).		
	line plot, "x" is used to			

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	represent the data			
	values, and tally marks			
	are used to represent			
	data on a tally chart.			

How is the Initial Precursor related to the Target? In order to represent and use data, students begin by learning to recognize what is the same and different between familiar items such as color, shape, quantity, size, texture, and pattern. Educators should take care to use attribute words (e.g., circle/square, more/less/same, rough/smooth, red, green, red, green) while defining and demonstrating their meaning. While students do not need to say these words, they do need to learn the meanings. Students will also begin to group two or more items in the same set based on an attribute. As the students group two or more items, the educator will demonstrate the representation in a bar graph or line plot and encourage students to actively participate in its creation.

How is the Distal Precursor related to the Target?

Students actively participate in the creation of bar graphs, picture graphs, line plots, and tally charts by placing representations, x's, or dots for each response to the research question.

Instructional Resources

See the Guide to Practice Activities and Released Testlets.
Using Untested (UN) Nodes
See the document Using Mini-Maps to Plan Instruction.

M.EE.8.SP.4 Construct a graph or table from given categorical data, and compare data categorized in the graph or table.

Mini-Map for M.EE.8.EE.7

Subject: Mathematics Expressions and Equations (EE) Grade: 8

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.8.EE.7 Solve simple algebraic equations with one variable	M.8.EE.7 Solve linear equations in one variable.
using addition and subtraction.	

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Combine two or more	Demonstrate	Determine the	Solve linear equations	Solve linear inequalities
sets of objects or	understanding of	unknown/missing	involving addition,	in one variable (e.g., 6 <
numbers to form a new	addition by combining	addend (e.g., 8 + <i>x</i> = 12)	subtraction,	8 + <i>x</i>).
set. Split one set into	the objects of two or	or sum (e.g., 4 + 6 = <i>x</i>)	multiplication, or	
multiple sets grouped	more sets and	when given an equation	division operations in	
together by similar	demonstrate	with addition operation	one variable (e.g., 8.4 +	
characteristics.	understanding of	and determine the	<i>x</i> = 17.56).	
	subtraction by	unknown/missing		
	removing some objects	minuend or subtrahend		
	from a larger set.	(e.g., 9 - <i>x</i> = 16) or the		
		difference (e.g., 13 - 5 =		
		x) when given an		
		equation with		
		subtraction operation.		

How is the Initial Precursor related to the Target? Solving linear equations requires a student to count small units, recognizing that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. The educator presents a set, labels it (e.g., two balls, one marker, three CDs), counts the items, labels it again, and encourages students to use numbers to label and count the separate sets. The general goal is to explore how the set changes when items are separated out (partitioned) or combined.

How is the Distal Precursor related to the Target? As students begin to understand labeling and counting small sets, they begin to use the number sequence and become more adept at tracking individual objects. They can recognize when items are added to a set or when items are taken away. Work on this skill using a variety of sets, labeling and counting the set, and moving items in and out of the set, labeling and counting the set again.

NOTE: Educators can work on the Distal Precursor level using the sets of numbers that students working at the Target level are working with.

Instructional Resources

Released Testlets

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

M.EE.8.EE.7 Solve simple algebraic equations with one variable using addition and subtraction.

Mini-Map for M.EE.8.EE.2

Subject: Mathematics Expressions and Equations (EE) Grade: 8

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.8.EE.2 Identify a geometric sequence of whole numbers with a whole number common ratio.	M.8.EE.2 Use square root and cube root symbols to represent solutions to equations of the form $x^2 = p$ and $x^3 = p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Arrange objects in a	Recognize patterns (i.e.,	Recognize a growing	Recognize a geometric	Recognize the recursive
specific order by	repeating, growing,	pattern as a pattern	sequence as an ordered	rule in geometric
following a specific rule	shrinking) involving	that increases (e.g., 3, 6,	list of numbers, such	sequences by
(e.g., arrange objects	numbers or letters (e.g.,	9, 12) and a shrinking	that each term after the	determining how each
from the largest to the	a, b, b, a, b, b; 2, 5, 8,	pattern as a pattern	first is determined by	term in the sequence
smallest size). Group	11). Identify a	that decreases (e.g., 12,	multiplying or dividing	differs from the
like items by attributes	sequence as an ordered	10, 8).	the preceding term by a	preceding term (e.g.,
such as size, shape,	list of numbers that		constant amount (e.g.,	the recursive rule in the
color, and size. Contrast	adheres to a common		2, 4, 8, 16).	sequence 2, 4, 8, 16 is
or distinguish objects	rule between			"multiply by 2").
based on attributes	corresponding numbers			
such as shape, size,	(e.g., 2, 4, 6, 8).			
texture, and numerical				
pattern.				

How is the Initial Precursor related to the Target? In order to recognize geometric patterns, students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "this set has all red objects; this set has all blue," "these fidgets are big; these fidgets are small") and the student observes, feels, or otherwise interacts with them. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different.

How is the Distal Precursor related to the Target?

As students develop their awareness of attributes and putting like objects together, educators will draw the students' attention to patterns and sequences in numbers and letters (symbolic patterns) and allow the student to observe, feel, or otherwise interact with the patterns and sequences.

Instructional Resources

Released Testlets
See the <u>Guide to Practice Activities and Released Testlets</u> .
Using Untested (UN) Nodes
See the document Using Mini-Maps to Plan Instruction.

Link to Text-Only Map

M.EE.8.EE.2 Identify a geometric sequence of whole numbers with a whole number common ratio.

Mini-Map for M.EE.8.F.1-3 Subject: Mathematics Functions (F) Grade: 8

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.8.F.1-3 Given a function table containing at least 2 complete ordered pairs, identify a missing number that completes another ordered pair (limited to linear functions).	M.8.F.1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. M.8.F.2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). M.8.F.3 Interpret the equation $y = mx + b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Form a pair of objects	Recognize a growing	Communicate	Generate ordered pairs	Recognize covariation
by arranging two	pattern as a pattern	understanding that the	by recognizing the	as the pattern in which
objects in a specific	that increases (e.g., 3, 6,	numbers in the	pattern rules for each	two variables or
order (e.g., form a pair	9, 12) and a shrinking	coordinate pair (<i>x, y</i>)	coordinate and applying	quantities change
by first placing a pencil	pattern as a pattern	represent x units left or	these rules to the <i>x</i> - and	together. Recognize
and then placing a	that decreases (e.g., 12,	right on the <i>x</i> -axis and <i>y</i>	y-values [e.g., given (1,	correspondence as the
ruler). Arrange objects	10, 8).	units up or down on the	3), (2, 5), (3, 7), the	relationship between
by a specified rule (e.g.,		y-axis. Communicate	next ordered pair would	each x- and y-value.
arrange pencils in order		the next term in a	be (4, 9)].	
by length).		growing or shrinking		
		pattern, consisting of		
		numerals or letters, by		
		recognizing the core		

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
		unit or the pattern rule		
		and applying it to the		
		pattern (e.g., the		
		pattern rule in the		
		pattern: 3, 6, 9, 12 is		
		"add 3," so the next		
		term in the pattern is		
		12 + 3 equals 15).		

How is the Initial Precursor related to the Target? In order to understand and work with function tables, students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "this set has all red objects; this set has all blue," "these fidgets are big; these fidgets are small") and the student observes, feels, or otherwise interacts with them. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different. How is the Distal Precursor related to the Target? Building on arranging and ordering objects, educators can use some of the other mathematical concepts like working with sets or recognizing a whole and parts to help students identify "same" and "different." For instance, students may create a set and then create a second set that has the same amount. Then, they can change one of the sets to make it different. As students are learning to create and identify sets that are same and different, educators can draw student attention to the various attributes of a set to teach students to order, classify, and contrast the sets. These understandings will then lead to students having the attentional skills to recognize growing and shrinking patterns.

Instructional Resources

Released Testlets			
See the Guide to Practice Activities and Released Testlets.			
Using Untested (UN) Nodes			
See the document Using Mini-Maps to Plan Instruction.			

Link to Text-Only Map

M.EE.8.F.1-3 Given a function table containing at least 2 complete ordered pairs, identify a missing number that completes another ordered pair (limited to linear functions).

Mini-Map for M.EE.8.F.4 Subject: Mathematics Functions (F) Grade: 8

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.8.F.4 Determine the values or rule of a function using a	M.8.F.4 Construct a function to model a linear relationship
graph or a table.	between two quantities. Determine the rate of change and
	initial value of the function from a description of a relationship
	or from two (x, y) values, including reading these from a table
	or from a graph. Interpret the rate of change and initial value of
	a linear function in terms of the situation it models, and in
	terms of its graph or a table of values.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Initial Precursor Form a pair of objects by arranging two objects in a specific order (e.g., form a pair by first placing a pencil and then placing a ruler).	Distal Precursor Generate ordered pairs by recognizing the pattern rules for each coordinate and applying these rules to the <i>x</i> - and <i>y</i> -values [e.g., given (1, 3), (2, 5), (3, 7), the next ordered pair would be (4, 9)]. Communicate	Proximal Precursor Recognize covariation as the pattern in which two variables or quantities change together. Recognize the direction in which two variables change together (e.g., describe that as x increases, y	TargetCommunicateunderstanding of afunction rule from thelist of ordered pairs or agraph by determininghow x- and y-valueschange and relate toeach other (e.g., theslope is 1/1 and each y-	Successor Communicate understanding of a function as a set of ordered pairs or a line on a graph where there exists a relationship between <i>x</i> - and <i>y</i> - coordinates, and there are no two ordered
	be (4, 9)]. Communicate the next term in a growing or shrinking pattern, consisting of numerals or letters, by recognizing the core unit or the pattern rule and applying it to the	decreases).	slope is 1/1 and each y- value is equal to x-value + 2, or y = x + 2).	are no two ordered pairs with the same input (x-value) and different outputs (y- value).

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	pattern (e.g., the			
	pattern rule in the			
	pattern: 3, 6, 9, 12 is			
	"add 3," so the next			
	term in the pattern is			
	12 + 3 equals 15).			

How is the Initial Precursor related to the Target? In order to understand and work with function tables, students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "this set has all red objects; this set has all blue," "these fidgets are big; these fidgets are small") and the student observes, feels, or otherwise interacts with them. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different. Educators provide sorting activities that allow learners to isolate specific attributes while recognizing likenesses and differences among objects. Educators also provide activities that reinforce the skill of ordering (e.g., arrangement of objects from largest to smallest, sequencing daily events, and counting).

How is the Distal Precursor related to the Target? As student attention to objects and details develops, educators can extend their attention by providing experience with finding and creating simple patterns using objects and moving to symbols (e.g., numerals). Educators should take care to start with simple patterns (e.g., 1-2-1-2) and take advantage of the symbols that are already being used in the classroom. Educators should demonstrate how students can create and identify the pattern/rule (e.g., using colored cubes, the student creates a line of 5 cubes, the educator then creates a matching set and explains what to do to follow the student's pattern. Then, the student generates a third matching set. If the order is not followed, it is a good teaching opportunity to talk about why it doesn't fit the pattern). Learning to identify the rule of patterns will help students extend their thinking across patterns. As students work on identifying pattern rules, educators can also begin to demonstrate how rules can be used with ordered pairs (e.g., see example below). Provide students lots of opportunities to apply rules to create their own examples of ordered pairs.

Input	Rule	Output
5	+ 1	6
4	+1	5
7	+ 1	8
1	+ 1	

Input	Rule	Output
5	-2	3
4	-2	2
7	-2	
9	-2	7

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction

M.EE.8.F.4 Determine the values or rule of a function using a graph or a table.