M.EE.7.EE.1

Grade-Level Standard

M.7.EE.1 Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients

DLM Essential Element

M.EE.7.EE.1 Use the properties of operations as strategies to demonstrate that expressions are equivalent

Linkage Levels

Initial Precursor:
- Partition sets
- Combine sets

Distal Precursor:
- Model associativity of multiplication
- Model additive commutativity
- Model associativity of addition
- Model multiplicative commutativity

Proximal Precursor:
- Apply the associative property of multiplication
- Apply commutative property of addition
- Apply associative property of addition
- Apply the commutative property of multiplication

Target:
- Use properties of operations to generate equivalent expressions involving subtraction
- Use properties of operations to generate equivalent expressions involving addition

Successor:
- Use equivalent expressions in real-world context
A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- **IP** Initial Precursor
- **SP** Supporting
- **DP** Distal Precursor
- **S** Successor
- **PP** Proximal Precursor
- **UN** Untested
- **T** Target

M.EE.7.EE.1 Use the properties of operations as strategies to demonstrate that expressions are equivalent.
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 7

M.EE.7.EE.2

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.7.EE.2 Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, $a + 0.05a = 1.05a$ means that "increase by 5%" is the same as "multiply by 1.05." | M.EE.7.EE.2 Identify an arithmetic sequence of whole numbers with a whole number common difference | Initial Precursor:
- Classify
- Contrast objects
- Order objects
Distal Precursor:
- Recognize symbolic patterns
- Recognize sequence
Proximal Precursor:
- Recognize growing patterns
- Recognize shrinking patterns
Target:
- Recognize arithmetic sequences
Successor:
- Recognize the recursive rule for arithmetic sequences |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP Initial Precursor
- DP Distal Precursor
- PP Proximal Precursor
- T Target
- SP Supporting
- S Successor
- UN Untested
M.EE.7.EE.2 Identify an arithmetic sequence of whole numbers with a whole number common difference
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 7

M.EE.7.G.1

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.7.G.1 Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale | M.EE.7.G.1 Match two similar geometric shapes that are proportional in size and in the same orientation | **Initial Precursor:**
- Attend
- Notice what is new
Distal Precursor:
- Recognize same
- Recognize different
Proximal Precursor:
- Match the same two-dimensional shape with same size and same orientation
- Match the same three-dimensional shapes with same size and same orientation
Target:
- Match the same two-dimensional shape with different sizes and same orientation
- Match the same three-dimensional shapes with different size and same orientation
Successor:
- Match the same two-dimensional shapes with different size and different orientation
- Match the same three-dimensional shapes with different size and different orientation |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- **IP** Initial Precursor
- **SP** Supporting
- **DP** Distal Precursor
- **S** Successor
- **PP** Proximal Precursor
- **UN** Untested
- **T** Target
M.EE.7.G.1 Match two similar geometric shapes that are proportional in size and in the same orientation
ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP

MATH: GRADE 7
M.EE.7.G.2

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.7.G.2 Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle | M.E.E.7.G.2 Recognize geometric shapes with given conditions | **Initial Precursor:**
- Recognize same
- Recognize different

Distal Precursor:
- Recognize squares
- Recognize circles
- Recognize triangles
- Recognize rectangles
- Recognize cubes
- Recognize cones
- Recognize cylinders
- Recognize spheres

Proximal Precursor:
- Describe attributes of shapes

Target:
- Recognize shapes with specified attributes

Successor:
- Classify shapes with specified attributes

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- **IP** Initial Precursor
- **SP** Supporting
- **DP** Distal Precursor
- **S** Successor
- **PP** Proximal Precursor
- **UN** Untested
- **T** Target
M.EE.7.G.2 Recognize geometric shapes with given conditions

- F-2: recognize same
- F-76: recognize different
- F-9: match the same two-dimensional shape with same size and same orientation
- F-41: match the same two-dimensional shape with same sizes and different orientations
- F-49: match the same two-dimensional shape with different sizes and same orientation
- F-17: match the same two-dimensional shapes with different size and different orientation
- F-65: match the same three-dimensional shapes with different size and different orientation
- F-80: match the same three-dimensional shapes with same size and same orientation
- M-130: recognize squares
- M-131: recognize circles
- M-132: recognize triangles
- M-133: recognize rectangles
- M-135: recognize cubes
- M-136: recognize cones
- M-137: recognize cylinders
- M-138: recognize spheres
- M-119: describe attributes of shapes
- M-2424: explain non-defining attributes of shapes
- M-2425: recognize the defining attributes of a shape
- M-2426: recognize the non-defining attributes of a shape
- M-2427: explain defining attributes of shapes
- M-2466: recognize shapes with specified attributes
- M-2526: classify shapes with specified attributes
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 7

M.EE.7.G.4

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.7.G.4 Know the formulas for the area and circumference of a circle, and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle | M.EE.7.G.4 Determine the perimeter of a rectangle by adding the measures of the sides | Initial Precursor:
- Recognize attribute values
Distal Precursor:
- Describe measurable attributes
- Recognize measurable attributes
Proximal Precursor:
- Explain length
- Explain perimeter
Target:
- Calculate the perimeter of a rectangle by counting unit lengths on a grid
- Calculate perimeter by adding all the side lengths
Successor:
- Use coordinates to calculate perimeters of polygons |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP Initial Precursor
- SP Supporting
- DP Distal Precursor
- S Successor
- PP Proximal Precursor
- UN Untested
- T Target

M.EE.7.G.4 Copyright © 2018 University of Kansas Center for Research. All rights reserved. 1 of 2
M.EE.7.G.4 Determine the perimeter of a rectangle by adding the measures of the sides
Essential Element, Linkage Levels, and Mini-Map
Math: Grade 7

M.EE.7.G.5

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.7.G.5 Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure | M.EE.7.G.5 Recognize angles that are acute, obtuse, and right | **Initial Precursor:**
- Recognize attribute values
Distal Precursor:
- Recognize line
- Recognize point
- Recognize ray
Proximal Precursor:
- Recognize angle
Target:
- Recognize obtuse angles
- Recognize acute angles
- Recognize right angles
Successor:
- Compare angles to a right angle |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:
- IP Initial Precursor
- DP Distal Precursor
- PP Proximal Precursor
- T Target
- SP Supporting
- S Successor
- UN Untested
M.EE.7.G.5 Recognize angles that are acute, obtuse, and right
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 7

M.EE.7.NS.1

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.7.NS.1 Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram | M.EE.7.NS.1 Add fractions with like denominators (halves, thirds, fourths, and tenths) with sums less than or equal to one | **Initial Precursor:**
- Recognize separateness
- Recognize subset
Distal Precursor:
- Recognize parts of a given whole or a unit
Proximal Precursor:
- Explain the concept of addition and subtraction of fractions
- Decompose a fraction into a sum of unit fractions with the same denominator
Target:
- Add fractions with common denominators
Successor:
- Add or subtract fractions with denominators of 10 and 100 |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research. A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP Initial Precursor
- SP Supporting
- DP Distal Precursor
- S Successor
- PP Proximal Precursor
- UN Untested
- T Target
M.EE.7.NS.1 Add fractions with like denominators (halves, thirds, fourths, and tenths) with sum less than or equal to one
<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| **M.7.NS.2.a** Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as \((-1)(-1) = 1\) and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts | **M.EE.7.NS.2.a** Solve multiplication problems with products to 100 | **Initial Precursor:**
- Recognize separateness
- Recognize set

Distal Precursor:
- Solve repeated addition problems
- Represent repeated addition with an equation
- Explain repeated addition

Proximal Precursor:
- Demonstrate the concept of multiplication

Target:
- Multiply by 1, 2, 3, 4, 5, 6, 7, 8, 9, and/or 10

Successor:
- Divide by 1, 2, 3, 4, 5, 6, 7, 8, 9, and/or 10
- Apply the relationship between multiplication and division

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:
- **IP** Initial Precursor
- **SP** Supporting
- **DP** Distal Precursor
- **S** Successor
- **PP** Proximal Precursor
- **UN** Untested
- **T** Target
M.EE.7.NS.2.a Solve multiplication problems with products to 100
Essential Element, Linkage Levels, and Mini-Map
Math: Grade 7
M.EE.7.NS.2.B

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.7.NS.2.b</td>
<td>M.EE.7.NS.2.b</td>
<td>Initial Precursor:</td>
</tr>
<tr>
<td>Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If (p) and (q) are integers, then (-\frac{p}{q} = \frac{-p}{q} = \frac{-p}{-q}). Interpret quotients of rational numbers by describing real-world contexts</td>
<td>Solve division problems with divisors up to five and also with a divisor of 10 without remainders</td>
<td>- Recognize subset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Recognize set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Recognize separateness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distal Precursor:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Solve repeated subtraction problems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Represent repeated subtraction with an equation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Explain repeated subtraction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proximal Precursor:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Demonstrate the concept of division</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Target:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Divide by 1, 2, 3, 4, 5, and/or 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Successor:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Explain the relationship between multiplication and division</td>
</tr>
</tbody>
</table>

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP: Initial Precursor
- SP: Supporting
- DP: Distal Precursor
- S: Successor
- PP: Proximal Precursor
- UN: Untested
- T: Target
M.EE.7.NS.2.b Solve division problems with divisors up to five and also with a divisor of 10 without remainders
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 7

M.EE.7.NS.2.c-d

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.7.NS.2.c Apply properties of operations as strategies to multiply and divide rational numbers; M.7.NS.2.d Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats | M.EE.7.NS.2.c-d Express a fraction with a denominator of 10 as a decimal | Initial Precursor:
- Recognize separateness
- Recognize set

Distal Precursor:
- Recognize whole on a set model

Proximal Precursor:
- Recognize tenths in a set model
- Recognize one tenth in a set model

Target:
- Explain the decimal point
- Represent a fraction with a denominator of 10 as a decimal

Successor:
- Explain place value for tenths
- Compare two decimals to tenths using symbols

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP Initial Precursor
- DP Distal Precursor
- PP Proximal Precursor
- SP Supporting
- S Successor
- UN Untested
- T Target
M.EE.7.NS.2.c-d Express a fraction with a denominator of 10 as a decimal
Essential Element, Linkage Levels, and Mini-Map
Math: Grade 7
M.EE.7.NS.3

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.7.NS.3 Solve real-world and mathematical problems involving the four operations with rational numbers | M.EE.7.NS.3 Compare quantities represented as decimals in real world examples to tenths | Initial Precursor:
- Recognize separateness
- Recognize set
- Recognize subset
Distal Precursor:
- Recognize one tenth in a set model
- Recognize tenths in a set model
Proximal Precursor:
- Represent a decimal to tenths as a fraction
Target:
- Compare two decimals to tenths using symbols
Successor:
- Compare two decimals to hundredths using symbols |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:
- IP Initial Precursor
- SP Supporting
- DP Distal Precursor
- S Successor
- PP Proximal Precursor
- UN Untested
- T Target
M.EE.7.NS.3 Compare quantities represented as decimals in real world problems to tenths
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 7
M.EE.7.RP.1-3

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| **M.7.RP.1** Compute unit rates associated with ratios of fractions, including ratios of lengths, areas, and other quantities measured in like or different units; **M.7.RP.2** Recognize and represent proportional relationships between quantities; **M.7.RP.3** Use proportional relationships to solve multistep ratio and percent problems | **M.EE.7.RP.1-3** Use a ratio to model or describe a relationship | **Initial Precursor:**
- Recognize subset
- Recognize set
- Recognize separateness
Distal Precursor:
- Recognize fraction
- Explain unit fraction
- Partition any shape into equal parts
Proximal Precursor:
- Explain ratio
- Recognize many to 1 ratio
Target:
- Recognize many to many ratio
- Represent many to many ratio
Successor:
- Explain rates as ratios

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- **IP** Initial Precursor
- **SP** Supporting
- **DP** Distal Precursor
- **S** Successor
- **PP** Proximal Precursor
- **UN** Untested
- **T** Target
M.EE.7.RP.1-3 Use a ratio to model or describe a relationship
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 7

M.EE.7.SP.3

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.7.SP.3 Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability | M.EE.7.SP.3 Compare two sets of data within a single data display such as picture graph, line plot, or bar graph | **Initial Precursor:**
- Classify
- Order objects

Distal Precursor:
- Recognize the structure of a bar graph
- Recognize the structure of a line plot (dot plot)
- Recognize the structure of a picture graph

Proximal Precursor:
- Recognize peaks in data distribution
- Recognize symmetric distribution
- Recognize outliers
- Recognize variability in a data set

Target:
- Use visual overlap of two sets of data to compare variability of two populations
- Compare differences in shape of 2 or more sets of data

Successor:
- Draw inferences by comparing two data sets

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

<table>
<thead>
<tr>
<th>IP</th>
<th>Initial Precursor</th>
<th>SP</th>
<th>Supporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP</td>
<td>Distal Precursor</td>
<td>S</td>
<td>Successor</td>
</tr>
<tr>
<td>PP</td>
<td>Proximal Precursor</td>
<td>UN</td>
<td>Untested</td>
</tr>
<tr>
<td>T</td>
<td>Target</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M.EE.7.SP.3 Compare two sets of data within a single data display such as picture graph, line plot, or bar graph.
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 7

M.EE.7.SP.5-7

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.7.SP.5 Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event; M.7.SP.6 Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability; M.7.SP.7 Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy | M.EE.7.SP.5-7 Describe the probability of events occurring as possible or impossible | Initial Precursor:
- Recognize attribute values
Distal Precursor:
- Classify
Proximal Precursor:
- Recognize outcomes of an event
Target:
- Classify events as possible or impossible
Successor:
- Recognize probability as the likelihood of an event |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.
Key to map codes in upper right corner of node boxes:

IP Initial Precursor SP Supporting
DP Distal Precursor S Successor
PP Proximal Precursor UN Untested
T Target

M.EE.7.SP.5-7 Describe the probability of events occurring as possible or impossible