

Mini-Map for M.EE.7.NS.2.c-d

Subject: Mathematics The Number System (NS) Grade: 7

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.NS.2.c-d Express a fraction with a denominator of 10 as	M.7.NS.2.c Apply properties of operations as strategies to
a decimal.	multiply and divide rational numbers.
	M.7.NS.2.d Convert a rational number to a decimal using long
	division; know that the decimal form of a rational number
	terminates in 0s or eventually repeats.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Recognize a set model	Recognize one-tenth in	Communicate	Communicate
understanding of	that represents a	a set model. Recognize	understanding that a	understanding that the
"separateness" by	whole.	multiple tenths, such as	decimal point is a dot	value of the digit in the
recognizing objects that		two-tenths, five-tenths,	that separates the	tenths place is worth
are not joined together.		or eight-tenths in a set	whole number from the	that many tenths.
Communicate		model.	fractional part of a	Compare two decimals
understanding of a set			number. Represent a	to the tenths place
by recognizing a group			fraction with a	using symbols (i.e., =, <,
of objects sharing an			denominator of 10 as a	>) to show that one is
attribute.			decimal.	greater than, less than,
				or equal to the other.

How is the Initial Precursor related to the Target? Expressing a fraction as a decimal requires a student to be able to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. As educators present a set, they label it (e.g., two balls, one marker, three CDs), count the items, label it again, and encourage students to use numerals to label and count the separate sets. Use tools like the ten-frame to point out whole and parts (e.g., a set of 9 is part of 10).

How is the Distal Precursor related to the Target? As students work toward a greater understanding of sets, educators will provide students with many set models (see below) of fractions using the same unit fraction, either halves, thirds, fourths, or tenths. Students will work on identifying the whole.

Instructional Resources

Released Testlets

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

M.EE.7.NS.2.c-d Express a fraction with a denominator of 10 as a decimal.

Мар Кеу		
IP	Initial Precursor	
DP	Distal Precursor	
PP	Proximal Precursor	
Т	Target	
S	Successor	
UN	Untested	
Boxes indicate tested nodes		

Mini-Map for M.EE.7.RP.1-3

Subject: Mathematics Ratios and Proportional Relationships (RP) Grade: 7

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.RP.1-3 Use a ratio to model or describe a relationship.	 M.7.RP.1 Compute unit rates associated with ratios of fractions, including ratios of lengths, areas, and other quantities measured in like or different units. M.7.RP.2 Recognize and represent proportional relationships between quantities. M.7.RP.3 Use proportional relationships to solve multistep ratio and percent problems.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Divide familiar shapes,	Communicate	When shown two	Communicate
understanding of	such as circles, squares,	understanding that a	groups of multiple	understanding that
"separateness" by	and/or rectangles, into	ratio (e.g., 5:1)	objects (e.g., one group	rates (i.e. <i>, a/b</i>) can be
recognizing objects that	two or more equal	represents the	with two objects and	expressed as ratios (i.e.,
are not joined together.	parts. Demonstrate	relationship between	another group with	<i>a</i> : <i>b</i>). For example,
Communicate	understanding of a unit	two quantities (i.e., 5 of	three objects),	instructions for a craft
understanding of set by	fraction (e.g., 1/4) as	object <i>a</i> for every 1	recognize that for every	that uses 2/3 piece of
recognizing a group of	the quantity formed by	object b). When shown	two objects in the first	paper for each drawing
objects sharing an	one part when a whole	two groups of objects,	group there are three	can be expressed in the
attribute. Communicate	is partitioned into <i>n</i>	one group with one	objects in the second	ratio of pieces of paper
understanding of a	(e.g., 4) equal parts.	object and another	group. When shown	to number of drawings
subset by recognizing a	Recognize a fraction as	group with multiple	two groups of multiple	as 2:3.
subset as a set or group	a number expressed as	objects (e.g., 4),	objects, represent a	
of objects within a	a quotient of two	recognize that there are	many-to-many ratio of	
larger set that share an	integers in the form	four times as many	the parts as 2:3.	
attribute.		objects in the second		

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	<i>a/b,</i> with <i>b</i> not equal to	group as in the first		
	zero.	group.		

How is the Initial Precursor related to the Target? In order to understand ratios, students need to gain experience with creating sets. Educators can provide students with opportunities to take a set of objects (e.g., tiles, linking cubes, buttons) and separate them based on a given characteristic (e.g., shape, color, size) into two distinct sets. Then, separate the objects again based on another characteristic. How is the Distal Precursor related to the Target? As students become more adept at tracking discrete objects, they will begin working on one-to-one distribution of objects to person, objects to objects, and objects to available space (e.g., giving each person in the group a pencil; given four counters, they would line up four more counters in front of or on top of the first set; given three chairs at a table, the student would place a cup on the table for each available chair). As students understanding of one-to-one distribution develops, provide students many opportunities to recognize equivalence in sets with same items and then sets with differing items. As students work on all these skills and concepts, continue to draw their attention to parts and wholes.

Instructional Resources

Released TestletsSee the Guide to Practice Activities and Released Testlets.Using Untested (UN) NodesSee the document Using Mini-Maps to Plan Instruction.

M.EE.7.RP.1-3 Use a ratio to model or describe a relationship.

Mini-Map for M.EE.7.NS.3

Subject: Mathematics The Number System (NS) Grade: 7

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.NS.3 Compare quantities represented as decimals in	M.7.NS.3 Solve real-world and mathematical problems
real-world examples to tenths.	involving the four operations with rational numbers.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Recognize the set	Represent a decimal to	Compare two decimals	Compare two decimals
understanding of	model that represents	tenths (e.g., 5.6) as a	to the tenths place	to the hundredths place
"separateness" by	one-tenth. Recognize	fraction (i.e., 56/10).	using symbols (i.e., =, <,	using symbols (i.e., =, <,
recognizing objects that	the set model that is		>) to show that one is	>) to show that one is
are not joined together.	divided into tenths.		greater than, less than,	greater than, less than,
Communicate			or equal to the other.	or equal to the other.
understanding of set by				
recognizing a group of				
objects sharing an				
attribute. Communicate				
understanding of a				
subset by recognizing a				
subset as a set or group				
of objects within a				
larger set that share an				
attribute.				

How is the Initial Precursor related to the Target?

Adding fractions requires a student to be able to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. Educators present a set, label it (e.g., two balls, one marker, three CDs), count the items, label it again, and encourage students to use numerals to label and count the separate sets. Use tools like the ten-frame to point out whole and parts (e.g., a row of 5 dots and a row of 4 dots are parts or subsets of 9).

How is the Distal Precursor related to the Target?

As students begin to understand labeling, counting small sets, and recognizing wholes and parts of objects and sets, use set models to provide a wide variety of sets of 10 to model tenths (e.g., individual shapes to match the fraction: "I have 10 cubes in my bag, 1/10 of them are blue").

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

M.EE.7.NS.3 Compare quantities represented as decimals in real-world examples to tenths.

Map Key

Initial Precursor

Distal Precursor

Target

Successor

Untested

Boxes indicate tested

Proximal Precursor

IP

DP

PP

Т

S

UN

nodes

Mini-Map for M.EE.7.NS.1 Subject: Mathematics The Number System (NS)

The Number System (I Grade: 7

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.NS.1 Add fractions with like denominators (halves, thirds, fourths, and tenths) with sums less than or equal to one.	M.7.NS.1 Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Recognize each object	Communicate	Add two fractions with	Add or subtract two
understanding of	as the part of a whole	understanding that	common denominators	fractions where one
"separateness" by	or unit when shown a	when fractional parts	(e.g., 2/5 + 1/5 = 3/5).	fraction has a
recognizing objects that	whole or unit	are added, it produces a		denominator of 10 and
are not joined together.	containing a group of	larger portion of the		one has a denominator
Communicate	objects.	whole, and when		of 100 (e.g., 5/10 +
understanding of a		fractional parts are		1/100 = 50/100 + 1/100
subset by recognizing a		separated, it results in a		= 51/100).
subset as a set or group		smaller portion of the		
of objects within a		whole. Decompose		
larger set that share an		fractions into sums of		
attribute.		unit fractions with the		
		same denominator		
		(e.g., 3/7 = 1/7 + 1/7 +		
		1/7).		

How is the Initial Precursor related to the Target?

Adding fractions requires a student to be able to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. As educators present a set, label it (e.g., two balls, one marker, three CDs), count the items, label it again, and encourage students to use numerals to label and count the separate sets. Use tools like the ten-frame to point out whole and parts (e.g., a row of 5 dots and a row of 4 dots are parts or subsets of 9).

How is the Distal Precursor related to the Target?

As students begin to understand labeling, counting small sets, and recognizing wholes and parts of objects and sets, use a variety of tools (e.g., ten-frames, egg cartons, a collection of items in a category [clothes: shoes, socks, pants], your hands) to label and count the sets, and label and count the subsets.

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

M.EE.7.NS.1 Add fractions with like denominators (halves, thirds, fourths, and tenths) with sums less than or equal to one.

Mini-Map for M.EE.7.NS.2.a

Subject: Mathematics The Number System (NS) Grade: 7

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.NS.2.a Solve multiplication problems with products to	M.7.NS.2.a Understand that multiplication is extended from
100.	fractions to rational numbers by requiring that operations
	continue to satisfy the properties of operations, particularly the
	distributive property, leading to products such as $(-1)(-1) = 1$
	and the rules for multiplying signed numbers. Interpret
	products of rational numbers by describing real-world contexts.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Communicate	Demonstrate	Multiply a number up to	Divide a number by a
understanding of	understanding that in	multiplication by	20 by a number 1 to 10	divisor from 1 to 10 to
"separateness" by	repeated addition	combining multiple sets	to determine the	determine the quotient,
recognizing objects that	problems, a single	containing the same	product, using	using manipulatives if
are not joined together.	numerical value is	number of objects.	manipulatives as	needed. Quotients will
Communicate	added repeatedly (e.g.,	Communicate	needed.	not exceed 12.
understanding of a set	6 + 6 + 6) and that one	understanding that the		Communicate
by recognizing a group	way to add a number a	number of sets times		understanding of
of objects sharing an	given number of times	the number of objects		multiplication as the
attribute.	is by using skip-counting	in each set equals the		number of groups times
	as a strategy (e.g., 6 + 6	total number of objects.		the number of objects
	+ 6 can be added as 6,			in each group (with the
	12, 18). Represent			understanding that
	repeated addition			each group contains an
	problems using an			equal number of
	equation showing the			objects) and that the
	addition of the same			total number of objects

numeral the required	(i.e., the product) can
number of times, and	then be divided by the
find the correct sum	number of groups to
using an addition	equal the number of
strategy (e.g., 5 + 5 + 5	objects in each group,
= 15).	and vice versa.

How is the Initial Precursor related to the Target? Solving multiplication problems requires a student to be able to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. As educators present a set, they label it (e.g., two balls, one marker, three CDs), count the items, label it again, and encourage students to use numerals to label and count the separate sets. Use tools like the ten-frame to point out whole and parts (e.g., a row of 5 dots and a row of 4 dots are parts or subsets of 9).

How is the Distal Precursor related to the Target? As students' understanding of labeling and counting sets develops, they will begin working on adding items to a set and combining sets to create a new set. Additionally, students will work on developing an understanding of equal shares by actively participating in one-to-one distribution of objects to person, objects to objects, and objects to available space (e.g., giving each person in the group two pencils; given four counters, they would line up four more counters in front of or on top of the first set; given three chairs at a table, the student would place a cup on the table for each available chair). As students learn to work with sets and connect their understanding of equal shares to sets, educators will provide students experience with combining multiple sets (e.g., 3 sets with 4 counters each) and represent the problem (e.g., 4 + 4 + 4 = ?). Students will also learn to represent the problem using a pencil or their communication system (e.g., the student is shown 4 equal sets each with 2 counters. The student counts the first set and writes a 2 or indicates 2, then writes or indicates the plus sign. The student repeats for all 4 sets and then indicates the equal sign and solves the problem.).

Instructional Resources

Released Testlets

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

M.EE.7.NS.2.a Solve multiplication problems with products to 100.

Mini-Map for M.EE.7.NS.2.b

Subject: Mathematics The Number System (NS) Grade: 7

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.NS.2.b Solve division problems with divisors up to five	M.7.NS.2.b Understand that integers can be divided, provided
and also with a divisor of 10 without remainders.	that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers,
	then $-(p/q) = (-p)/q = p/(-q)$. Interpret quotients of rational numbers by describing real-world contexts.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Communicate	Show understanding of	Divide numbers within	Recognize the inverse
understanding of	understanding that	division by arranging	100 by 1, 2, 3, 4, 5, and	relationship between
"separateness" by	repeated subtraction is	the total number of	10 and determine the	multiplication and
recognizing objects that	a subtraction of equal	objects into two or	quotient, using	division, and
are not joined together.	groups from a number	more equal groups and	manipulatives.	communicate
Communicate	(e.g. <i>,</i> 15 - 5 - 5 - 5).	communicate that the		understanding that the
understanding of set by	Represent repeated	total number of objects		number of groups
recognizing a group of	subtraction using	(i.e., dividend) divided		multiplied by the
objects sharing an	equations (e.g., 15 - 5 -	by the number of		number of objects in
attribute. Communicate	5 - 5 = 0). Solve	groups (i.e., divisor) is		each group equals the
understanding of a	repeated subtraction	equal to the number of		total number of objects
subset by recognizing a	problems by identifying	objects in each group		and that the total
subset as a set or group	the number of times a	(i.e., quotient).		number of objects
of objects within a	number is subtracted			divided by the number
larger set that share an	repeatedly from			of groups equals the
attribute.	another number to			number of objects in
	reach zero.			each group.

How is the Initial Precursor related to the Target? In order to understand division, students must learn to organize items into groups/sets based on a common characteristic such as size, color, shape, or texture. Students learn how to sort items by separating a group of items into two groups (e.g., music I like/music I don't like; red fidgets/black fidgets). As students gain comfort sorting items into sets, they are encouraged to use their language to convey their thought process by identifying and naming the characteristic that determines the set (e.g., color, length). Activities that require students to engage actively with the items will foster understanding of set, subsets, and separateness.

How is the Distal Precursor related to the Target? As students' understanding of labeling and counting sets develops, they will begin working on adding and taking away items from a set. Educators provide opportunities for students to work on developing an understanding of equal shares by actively participating in one-to-one distribution of objects to person, objects to objects, and objects to available space (e.g., giving each person in the group two pencils; given four counters they would line up, then four more counters in front of or on top of the first set; given three chairs at a table, the student would place a cup on the table for each available chair) and taking equal shares away (subtracting) from each person, object, or space. Educators will provide opportunities for students to connect their understanding of subtraction (starting with the whole and taking away a part) to repeated subtraction. For example, if the educator has 12 balls, and each team gets 4 balls, how many teams will there be? By subtracting 4 from the whole, we made 3 equal sets so there are 3 teams.

12 - 4=8 8 - 4=4 4 - 4=0

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

M.EE.7.NS.2.b Solve division problems with divisors up to five and also with a divisor of 10 without remainders.

Mini-Map for M.EE.7.G.1 Subject: Mathematics Geometry (G) Grade: 7

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.G.1 Match two similar geometric shapes that are	M.7.G.1 Solve problems involving scale drawings of geometric
proportional in size and have the same orientation.	figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different
	scale.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Show interest in and	Recognize "same" as	Match two 2-	Match two 2-	Match two 2-
focused attention to a	the object that shares	dimensional or 3-	dimensional or 3-	dimensional or 3-
task, object, or any	all of the same	dimenisional shapes	dimensional shapes	dimensional shapes
environment stimulus.	attributes as other	(e.g., squares,	(e.g., squares,	(e.g., squares,
Notice or pay attention	objects in a group.	rectangles, circles,	rectangles, circles,	rectangles, circles,
to a new stimuli (e.g.,	Recognize "different" as	spheres, rectangular	spheres, rectangular	spheres, rectangular
object, task, sound)	the object that shares	prisms, cubes,	prisms, cubes,	prisms, cubes,
introduced in the	some or none of the	pyramids) that are the	pyramids) that are	pyramids) that are
environment. (Students	attributes as other	same size and same	different sizes and the	different sizes and
may use the methods of	objects in a group.	orientation.	same orientation.	different orientations.
eye gaze, pointing, etc.				
to show they have				
noticed the new				
stimuli.)				

How is the Initial Precursor related to the Target? In order to match two- and three-dimensional shapes, students must first begin by learning to attend to people and objects when they are present. In the context of this EE, educators should work on attending while interacting with shapes. As students' attention to people, objects, and shapes increases, the educator draws the students' attention to new objects or stimuli, labels them (e.g., "these are two red cubes and two blue cubes", or "you have two fidgets; one is big and one is small but they are both fidgets"), and the student observes, feels, or otherwise interacts with it. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different.

How is the Distal Precursor related to the Target?

At this level, educators will encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different and using the core vocabulary to demonstrate the words same and different.

Instructional Resources

Released Testlets	
See the Guide to Practice Activities and Released Testlets.	
Using Untested (UN) Nodes	
Using Untested (UN) Nodes	

M.EE.7.G.1 Match two similar geometric shapes that are proportional in size and have the same orientation.

	Мар Кеу	
IP	Initial Precursor	
DP	Distal Precursor	
PP	Proximal Precursor	
Т	Target	
S	Successor	
UN	Untested	
Boxes indicate tested nodes		

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.G.2 Recognize geometric shapes with given conditions.	M.7.G.2 Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize "same" as	Recognize two-	Communicate attribute	Recognize shapes with	Group together shapes
the object that shares	dimensional shapes	values of a shape, such	specified attributes	with specified attributes
all of the same	such as square, circle,	as number of sides or	(e.g., number of sides,	(e.g., number of sides,
attributes as other	triangle, or rectangle or	number of corners (e.g.,	number of vertices).	number of vertices).
objects in a group.	three-dimensional	a square has four sides).		
Recognize "different" as	shapes such as cube,			
the object that shares	cone, cylinder, or			
some or none of the	sphere.			
attributes as other				
objects in a group.				

How is the Initial Precursor related to the Target? Being able to recognize shapes given certain conditions requires a student to recognize when basic objects and shapes are the same or different. Work on this understanding by providing students with a shape and naming it (e.g., "this is a square"). Then provide multiple examples of the same shape so students can make comparisons (e.g., focusing student attention on the characteristics that make this a particular shape [e.g., a square has 4 sides that are the same size]). As students explore shapes, label them and describe them as same or different.

NOTE: When presenting the same shape for comparison, do use shapes with different colors, textures, sizes, and orientation so that students understand the attribute that makes it that shape (e.g., 4 sides that are the same size).

How is the Distal Precursor related to the Target? Now that students have experience identifying shapes as "same" and "different", provide instruction that focuses on the attribute of a given shape and making comparisons with other shapes. Educators should take care to use the names of the shapes while defining and describing the attributes. While students do not need to say the shape names, they do need to learn what makes a shape a shape (e.g., a square has four equal straight sides, a triangle has three straight sides, and a cone is an object that narrows from a circular base to a point).

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

M.EE.7.G.2 Recognize geometric shapes with given conditions.

Mini-Map for M.EE.7.G.5 Subject: Mathematics Geometry (G) Grade: 7

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.G.5 Recognize angles that are acute, obtuse, and right.	M.7.G.5 Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize attributes or	Recognize a point as a	Recognize an angle as a	Recognize an acute,	Compare the measure
characteristics of an	precise location on a	figure formed by two	obtuse, or right angle.	of an angle to the
object, such as color,	plane or in space,	rays sharing one		measure of a right
orientation, length,	usually represented by	endpoint.		angle, and
width, and weight.	a dot. Recognize a ray			communicate whether
	as a part of a line that			the measure of the
	begins at one point and			angle is greater than,
	extends infinitely in one			less than, or congruent
	direction. Recognize a			to the measure of the
	line as a straight line			right angle.
	that extends infinitely in			
	two directions.			

How is the Initial Precursor related to the Target? In order to recognize angles, students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "this is a circle, and it does not have any sides", "this is a rectangle, and it has four sides") and the student observes, feels, or otherwise interacts with the shapes. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different.

How is the Distal Precursor related to the Target?

At this level, educators provide students with specific vocabulary (line, point, and ray). These are all denoted by certain characteristics (a line has arrows on both ends; a point is a dot on a graph, a line, a line segment, or a number line; a ray is a line that has a well-defined starting point). Educators should take care to use the names "line", "point", and "ray" while defining and describing the attributes. While students do not need to say the names, they do need to learn their meaning. Educators should teach these attributes within the context of working with shapes, graphs, parallel lines, perpendicular lines, etc.

Instructional Resources

Released Testlets

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

M.EE.7.G.5 Recognize angles that are acute, obtuse, and right.

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.G.4 Determine the perimeter of a rectangle by adding the measures of the sides.	M.7.G.4 Know the formulas for the area and circumference of a circle, and use them to solve problems; give an informal derivation of the relationship between the circumference and
	area of a circle.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize attributes or	Recognize and explain	Communicate	Calculate the perimeter	Determine the
characteristics of an	measurable (e.g.,	understanding that	of a shape by adding	perimeter of a square
object, such as color,	height, depth,	length is the measure	the measures of all the	or rectangle drawn on a
orientation, length,	diameter, weight) and	along a side of a shape	sides. Calculate the	graph paper using the <i>x</i> -
width, and weight.	non-measurable (e.g.,	or object and perimeter	perimeter of a rectangle	and y-coordinates of
	color or orientation)	is the measure around a	drawn on a grid paper	the vertices.
	attribute values.	shape or object,	by counting the unit	
		beginning and ending at	squares contained	
		the same point, and	within the boundary of	
		without any overlap.	the shape.	

How is the Initial Precursor related to the Target? In order to calculate perimeter, students begin by learning to

notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "these are two long cubes and short cubes," or "you have two fidgets; one is big and one is small but they are both fidgets"), and the student observes, feels, or otherwise interacts with it. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different.

How is the Distal Precursor related to the Target?

As students develop their attention to objects and notice the difference between objects, they will begin working on recognizing and describing measurable attributes. Students need lots of experience making direct comparisons between objects. Educators should use the comparison words (e.g., big/small, tall/short, longer/shorter). While students do not need to say them, they do need to learn their meaning.

Instructional Resources

Released Testlets	
See the Guide to Practice Activities and Released Testlet	ts
Using Untested (UN) Nodes	
See the document Using Mini-Maps to Plan Instruction.	

M.EE.7.G.4 Determine the perimeter of a rectangle by adding the measures of the sides.

Mini-Map for M.EE.7.SP.3

Subject: Mathematics Statistics and Probability (SP) Grade: 7

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.SP.3 Compare two sets of data within a single data display such as a picture graph, line plot, or bar graph.	M.7.SP.3 Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring
	the difference between the centers by expressing it as a multiple of a measure of variability.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Arrange objects in a	Recognize the structure	Recognize symmetric	Compare variability of	Draw inferences by
specific order or by	of bar graphs, picture	distribution, outliers,	two data sets (i.e.,	comparing the shape
following a specific rule	graphs, and line plots	and peaks in a data	spread out or grouped	and spread of two data
(e.g., arranging three	such as the title and	distribution shown	together) by	sets (e.g., compare the
pencils by increasing	labels for the x- and y-	graphically. Recognize	overlapping the shapes	peaks of two sets of
length). Group like	axes. Understand that	data values	of two data	data, height of soccer
items by attributes and	bars are used to display	substantially larger or	distributions. Compare	players and height of
distinguish between like	data on bar graphs,	smaller than the other	differences in shapes of	basketball players, to
items based on simple	where the height of the	values as outliers.	two or more sets of	communicate that
characteristics, such as	bar represents the data	Recognize peaks as data	data (i.e., peaks,	basketball players are,
shape, size, texture, and	values. Understand that	values that most	outliers, or symmetric	in general, taller than
numerical pattern.	pictures or symbols are	frequently occur.	distribution).	soccer players).
	used to display data on	Recognize symmetric		
	picture graphs, where	distribution as		
	the number of pictures	distributions where the		
	or symbols represents	left- and right-hand		
	the data values.	sides of the		
	Understand that on a	distributions are		
	line plot, "x" is used to	roughly equal.		

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	represent the data	Recognize whether a		
	values.	set of scores is spread-		
		out or grouped together		
		(variability).		

How is the Initial Precursor related to the Target? In order to compare data, students begin by learning to recognize what is the same and different between familiar items; color, shape, quantity (1-4), size, texture, and pattern. Educators should take care to use attribute words while defining and demonstrating their meaning. While students do not need to say these words, they do need to learn the meanings. Students will also begin to group two or more items in the same set based on an attribute (e.g., two tigers, bumpy balls and bumpy gravel, red spoons). As the students group two or more items, the educator will demonstrate the representation in a bar graph or line plot and encourage students to actively participate in its creation.

How is the Distal Precursor related to the Target?

Students actively participate in the creation of graphs and line plots by placing representations, x's, or dots for each response to the research question.

Instructional Resources

Released Testlets			
See the Guide to Practice Activities and Released Testlets.			
Using Untested (UN) Nodes			
See the document Using Mini-Maps to Plan Instruction.			

Link to Text-Only Map

M.EE.7.SP.3 Compare two sets of data within a single data display such as a picture graph, line plot, or bar graph.

Mini-Map for M.EE.7.SP.5-7

Subject: Mathematics Statistics and Probability (SP) Grade: 7

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.SP.5-7 Describe the probability of events occurring as possible or impossible.	 M.7.SP.5 Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event. M.7.SP.6 Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. M.7.SP.7 Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize attributes or	Group together objects	Recognize possible	Categorize events as	Communicate
characteristics of an	by attribute values such	outcomes of an event	possible or impossible	understanding that
object, such as color,	as shape or size (e.g.,	(e.g., drawing a red	(e.g., drawing a red	probability of an event
orientation, length,	group together a	marble from a bag	marble from a bag	is the likelihood of an
width, and weight.	square, a rectangle, and	containing red and	containing red and	event occurring (e.g.,
	a rhombus, as they all	green marbles).	yellow marbles as	given the likelihood of
	have four sides).		possible and drawing a	drawing a blue crayon
			blue marble from a	out of a box containing
			group of red and yellow	5 blue crayons and 6
			marbles as an	yellow crayons is 5/11,
			impossible event).	the student describes
				5/11 as the probability).

How is the Initial Precursor related to the Target? In order to describe the probability of an event, students begin by learning about attributes, numbers, and measurement. Educators draw student attention to new objects or stimuli, label and describe them (e.g., "this is a circle; it won't have sides," "this egg carton has 12 spaces; it is likely that 12 eggs will fit into those spaces," "this book is a small book, and it's impossible for it to get bigger") and students observe, feel, or otherwise interact with the objects. How is the Distal Precursor related to the Target? Proportional understanding is key when working toward describing probabilities. Educators provide many opportunities for students to classify (group) items based on their size (e.g., compare two or more items and determine which is larger or smaller), amount (e.g., numbers larger or smaller than a given number), and distance between numbers (e.g., skip counting by 2, 5, or 10).

Use a number line or counters to model how you got your answer.

2, 4, 6, ?

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

Link to Text-Only Map

M.EE.7.SP.5-7 Describe the probability of events occurring as possible or impossible.

Мар Кеу			
IP	Initial Precursor		
DP	Distal Precursor		
PP	Proximal Precursor		
Т	Target		
S	Successor		
UN	Untested		
Boxes indicate tested nodes			

Mini-Map for M.EE.7.EE.1

Subject: Mathematics Expressions and Equations (EE) Grade: 7

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.EE.1 Use the properties of operations as strategies to	M.7.EE.1 Apply properties of operations as strategies to add,
demonstrate that expressions are equivalent.	subtract, factor, and expand linear expressions with rational
	coefficients.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Combine two or more	Demonstrate	Apply commutative	Recognize an expression	Write two equivalent
sets of objects or	understanding that the	(e.g., 3 + 4 = 4 + 3) and	equivalent to a given	expressions that
numbers to form a new	sum or product of two	associative [e.g., (2 +	expression involving	represent a given real-
set. Divide a set of 10 or	numbers remains the	3) + 5 = 2 + (3 + 5)]	addition and	world problem. For
fewer objects into two	same regardless of the	properties of addition	subtraction operations	example, "Joe has 5
or more distinct subsets	order in which numerals	to add two or more	by using commutative	books, John has 7 books,
(e.g., dividing a set	are written (e.g., 3 + 4 =	numbers. Apply	and associative	and Kayla has 8 books.
containing 10 objects	4 + 3, 2 x 3 = 3 x 2) and	commutative (e.g., 3 ×	properties of addition	How many books do they
into two subsets	that the sum or product	$4 = 4 \times 3$) and	and multiplication {e.g.,	have altogether?" Two
containing 4 and 6	of three or more	associative [e.g., (10 ×	recognize [(3 + 4) - (5 x	equivalent expressions
objects).	numbers remains the	$4) \times 2 = 10 \times (4 \times 2)$	6)] as an expression	that represent this word
	same regardless of the	properties of	equivalent to [(4 + 3) -	problem are (5 + 7) + 8
	grouping of the	multiplication as	(6 x 5)]}.	and (7 + 8) + 5.
	numbers [e.g., (2 + 3) +	strategies to multiply		
	5 = 2 + (3 + 5), 2 x (3 x 5)	two or more numbers.		
	= (2 x 3) x 5].			

How is the Initial Precursor related to the Target? In order to use properties of operations, students begin by counting small units, recognizing that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. As educators present a set, they label it (e.g., two balls, one marker, three CDs), count the items, label it again, and encourage students to use numerals to label and count the separate sets. The general goal is to explore how the set changes when items are separated out (partitioned) or combined.

How is the Distal Precursor related to the Target?

As students continue developing their understanding of how sets change, educators can use manipulatives to create sets that model the commutative and associative properties of addition and multiplication.

Instructional Resources

M.EE.7.EE.1 Use the properties of operations as strategies to demonstrate that expressions are equivalent.

Mini-Map for M.EE.7.EE.2

Subject: Mathematics Expressions and Equations (EE) Grade: 7

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.EE.2 Identify an arithmetic sequence of whole numbers	M.7.EE.2 Understand that rewriting an expression in different
with a whole number common difference.	forms in a problem context can shed light on the problem and
	how the quantities in it are related.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Arrange objects in a	Recognize patterns (i.e.,	Recognize a growing	Recognize arithmetic	Recognize the recursive
specific order by	repeating, growing,	pattern as a pattern	sequences as sequences	rule in arithmetic
following a specific rule	shrinking) involving	that increases (e.g., 3, 6,	where the difference	sequences by
(e.g., arrange objects	numbers or letters (e.g.,	9, 12), and a shrinking	between two	determining how each
from the largest to the	a, b, b, a, b, b; 2, 5, 8,	pattern as a pattern	consecutive terms is	term in the sequence
smallest size). Group	11). Identify a	that decreases (e.g., 12,	constant (e.g., 1, 4, 7,	differs from the
like items by attributes	sequence as an ordered	10, 8).	10).	preceding term (e.g.,
such as size, shape, and	list of numbers that			the recursive rule in the
color. Contrast or	adheres to a common			sequence 2, 4, 6, 8 is
distinguish objects	rule between			"add 2").
based on attributes	corresponding numbers			
such as shape, size,	(e.g., 2, 4, 6, 8).			
texture, and numerical				
pattern.				

How is the Initial Precursor related to the Target?

In order to identify arithmetic sequences, students begin by learning to recognize what is the same and different between familiar items, such as color, shape, quantity, size, texture, and pattern. Educators should take care to use attribute words (e.g., circle/square, more/less/same, rough/smooth, red, green, red, green) while defining and demonstrating their meaning. While students do not need to say these words, they do need to learn the meanings. Educators will also provide activities in which students work on grouping two or more items in the same set based on an attribute and ordering the items by size or shape. How is the Distal Precursor related to the Target? As students develop their understanding of attributes and work toward arithmetic sequences, educators provide interactive lessons around patterns using attributes like shape, size, and color. At this level, students are also expected to recognize symbolic (letter and number) patterns. This also requires that students recognize numerals in order. (i.e., 1, 2, 3...). Educators should take care to use number names while defining and demonstrating symbolic sequences. While students do not need to say these words, they do need to learn the meanings and the sequence.

Instructional Resources

Link to Text-Only Map

