

Mini-Map for M.EE.6.RP.1

Subject: Mathematics Ratios and Proportional Relationships (RP) Grade: 6

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.RP.1 Demonstrate a simple ratio relationship.	M.6.RP.1 Understand the concept of a ratio, and use ratio
	language to describe a ratio relationship between two
	quantities.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Recognize two glasses	Divide familiar shapes,	When shown two	When shown two
understanding of a unit	with an equal amount	such as circles, squares,	groups of objects, one	groups of multiple
by recognizing a group	of liquid.	and/or rectangles, into	group with one object	objects (e.g., one group
of countable objects.		two or more equal	and another group with	with two objects and
Communicate		parts. Demonstrate	multiple objects (e.g.,	another group with
understanding of		understanding of a unit	4), recognize that there	three objects),
"wholeness" by		fraction (e.g., 1/4) as	are four times as many	recognize that for every
recognizing an object		the quantity formed by	objects in the second	a objects in the first
that has all the parts		one part when a whole	group as in the first	group there are b
joined together.		is partitioned into n	group. When shown	objects in the second
Recognize parts of an		(e.g., 4) equal parts.	two groups of objects,	group (e.g., for every
object and the whole		Recognize a fraction as	one group with one	two objects in the first
object.		a number expressed as	object and another	group, there are three
		a quotient of two	group with multiple	objects in the second
		integers in the form	objects (e.g., 4),	group). When shown
		<i>a/b</i> , with <i>b</i> not equal to	represent a many-to-	two groups of multiple
		zero.	one ratio of the parts as	objects, represent a
			1:4 or 1/4.	many-to-many ratio of
				the parts (e.g., 2:3).

How is the Initial Precursor related to the Target? Being able to understand ratios requires a student to recognize a unit and recognize when basic objects are in whole and part forms. Work on this understanding by giving students an opportunity to observe, feel, or otherwise interact with objects and shapes in their whole and part forms. The general goal is to explore the differences between whole units or objects and parts of units or objects. As students explore shapes, label them and describe them as whole or part.

NOTE: Educators can work on the Initial Precursor skills using everyday objects and/or using the shapes that students working at the Target level are representing as a ratio.

How is the Distal Precursor related to the Target?

As students begin to recognize whole objects or shapes and parts of objects or shapes, they can move toward building and taking apart shapes.

NOTE: Educators can work on the Distal Precursor skills using everyday objects and/or using the shapes that students working at the Target level are representing as a ratio.

Instructional Resources

Released Testlets

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

M.EE.6.RP.1 Demonstrate a simple ratio relationship.

Mini-Map for M.EE.6.NS.1 Subject: Mathematics The Number System (NS) Grade: 6

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.NS.1 Compare the relationships between two unit	M.6.NS.1 Interpret and compute quotients of fractions, and
fractions.	solve word problems involving division of fractions by fractions
	(e.g., by using visual fraction models and equations to represent
	the problem).

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Recognize two glasses	Recognize a fraction as	Communicate	Communicate
understanding of a unit	with an equal amount	a number expressed as	understanding that	understanding that the
by recognizing a group	of liquid. Divide familiar	a quotient of two	when a whole is divided	numerator represents a
of countable objects.	shapes, such as circles,	integers in the form	into more parts, each	number of equal parts
Communicate	squares, and/or	<i>a/b,</i> with <i>b</i> not equal to	part is smaller than	and the denominator
understanding of	rectangles, into two or	zero. Demonstrate	when that same whole	represents how many
"wholeness" by	more equal parts.	understanding of a unit	is divided into fewer	equal parts make up the
recognizing an object		fraction (e.g., 1/4) as	parts (e.g., 1/5 is	whole. Compare
that has all the parts		the quantity formed by	smaller than 1/2	fractions (i.e., which
joined together.		one part when a whole	because in 1/5 the	fraction is greater than
Recognize parts of an		is partitioned into n	whole is divided into	and which is less than)
object and the whole		(e.g., 4) equal parts.	five equal parts and in	using manipulatives.
object.		Recognize the number	1/2 the same whole is	Add fractions with
		above the fraction bar	divided into two equal	common denominators
		as the numerator and	parts).	(e.g., 2/5 + 1/5 = 3/5),
		the number below the		and decompose
		fraction bar as the		fractions into sums of
		denominator.		unit fractions with the
				same denominator

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
				(e.g., 3/7 = 1/7 + 1/7 +
				1/7).

How is the Initial Precursor related to the Target? In order to compare unit fractions, students need to gain experience with parts and wholes. This concept can literally be taught in every area of mathmatics (i.e., sets, number sense, counting, operations, patterns, measurement, data analysis, geometry, and algebra). Educators can start by having students work with sets, taking whole sets and breaking them into parts based on attributes. When counting, label what has been counted (e.g., two balls, one marker, three CDs), count the items, label it again, and encourage students to use numerals to label and count the separate sets. Use tools like the ten-frame to point out whole and parts (e.g., a row of 5 dots and a row of 4 dots are parts or subsets of 9). How is the Distal Precursor related to the Target? As students begin to develop the understanding of sets and numbers, educators will highlight the differences between sets on the basis of overall area or discrete number using the words more, less, and equal. Provide students with multiple opportunities to count and compare a wide variety of sets with an increasing number of items, label the set (e.g., eight ball, 12 bears, 15 blocks), and move items in and out of the sets, labeling and counting them again (e.g., "You just said this set has 11 cubes; if I take two cubes, how many will you have?").

Being able to partition shapes requires a student to recognize a unit and recognize when basic objects are in whole and part forms. Work on this understanding by giving students an opportunity to observe, feel, or otherwise interact with objects and shapes in their whole and part forms. The general goal is to explore the differences between whole units or objects and parts of units or objects. As students explore shapes, label them and describe them as whole or part. Have students build (construct) and take apart (deconstruct) shapes.

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

See the document <u>Using Mini-Maps to Plan Instruction</u>.

Link to Text-Only Map

M.EE.6.NS.1 Compare the relationships between two unit fractions.

Mini-Map for M.EE.6.NS.5-8

Subject: Mathematics The Number System (NS) Grade: 6

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.NS.5-8 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero).	 M.6.NS.5 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. M.6.NS.6 Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates. M.6.NS.7 Understand ordering and absolute value of rational numbers. M.6.NS.8 Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Count all objects in a	Communicate	Demonstrate use of	Communicate
understanding of	set to communicate the	understanding that	positive and negative	understanding of
"separateness" by	total number of objects	opposite numbers are	numbers in real-world	inequalities in real-
recognizing objects that	in that set. Identify sets	equidistant from zero	contexts such as	world contexts (e.g., -3
are not joined together.	having the same	but in opposite	temperature, elevation,	degrees > -7 degrees
Communicate	number of objects.	directions, or that when	credits, and debits (e.g.,	means that -3 degrees
understanding of set by	Identify a set containing	two opposite numbers	representing a debit of	is warmer than -7
recognizing a group of	a different number of	are added together	500 dollars as -500	degrees). Communicate
objects sharing an	objects than the other	they yield a sum of zero	dollars).	the meaning of zero in
attribute.	two sets. Recognize a	(e.g., 3 + (- 3) = 0, thus 3		relation to positive and
	set containing more or	and -3 are opposite		negative numbers in
	fewer objects than the	numbers).		real-world contexts
	other set.			(e.g., recognize that no
				elevation, or 0 feet,
				means "at sea level";
				positive elevation, for
				example, 200 feet,
				means "above sea
				level"; and negative
				elevation, for example, -
				200 feet, means "below
				sea level").

How is the Initial Precursor related to the Target?

In order to use positive and negative numbers, students need to gain experience with creating sets. Educators can help students learn this by providing students with opportunities to take a set of objects (e.g., tiles, linking cubes, buttons) and separate them based on a given characteristic (e.g., shape, color, size) into two distinct sets. Then encourage them to separate them again based on another characteristic.

How is the Distal Precursor related to the Target?

As students begin to develop the understanding of sets and numbers, educators will highlight the differences between sets on the basis of overall area or discrete number using the words same, different, fewer and more. Provide students with multiple opportunities to count and compare a wide variety of sets with an increasing number of items, label the set (e.g., eight ball, 12 bears, 15 blocks), and move items in and out of the sets, labeling and counting them again (e.g., "You just said this set has 11 cubes; if I take two cubes, how many will you have?").

Instructional Resources

Link to Text-Only Map

M.EE.6.NS.5-8 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero).

Mini-Map for M.EE.6.NS.2

Subject: Mathematics The Number System (NS) Grade: 6

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.NS.2 Apply the concept of fair share and equal shares to	M.6.NS.2 Fluently divide multi-digit numbers using the standard
divide.	algorithm.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Divide a set containing	Communicate	Demonstrate	Divide a number within
understanding of	10 or fewer objects into	understanding that	understanding of	12 by a divisor from 1 to
"separateness" by	equal subsets (e.g.,	repeated subtraction is	division by splitting a	5 to determine the
recognizing objects that	divide a set consisting	subtracting equal	set into an equal	quotient, using
are not joined together.	of 10 counters into two	groups from a number	number of subsets and	manipulatives as
Communicate	subsets with 5 counters	(e.g., 15 - 5 - 5 - 5).	communicating the	needed.
understanding of set by	each).	Represent repeated	quotient as the number	
recognizing a group of		subtraction using	of equal subsets (e.g., a	
objects sharing an		equations (e.g., 15 - 5 -	set consisting of 15	
attribute. Communicate		5 - 5 = 0), and model	objects has three	
understanding of a		repeated subtraction	subsets, each	
subset by recognizing a		using concrete	containing 5 objects).	
subset as a set or group		manipulatives.		
of objects within a				
larger set that share an				
attribute.				

How is the Initial Precursor related to the Target? In order to understand division, students must learn to organize items into groups/sets based on a common characteristic such as size, color, shape, or texture. Students working at the Initial Precursor linkage level learn how to sort items by separating a group of items into two groups (e.g., music I like/music I don't like; red fidgets/black fidgets). As students gain comfort sorting items into sets, they are encouraged to communicate their thought process by identifying and naming the characteristic that determines the set (e.g., color, length). Activities that require students to engage actively with the items will foster understanding of set, subsets, and separateness.

How is the Distal Precursor related to the Target? As students' understanding of labeling and counting sets develops, they will begin working on adding and taking away items from a set. Educators provide opportunities for students to work on developing an understanding of partitioning by actively participating in one-to-one distribution of objects to person, objects to objects, and objects to available space (e.g., giving each person in the group two pencils; given four counters they can line up, then four more counters in front of or on top of the first set; given three chairs at a table, the student would place a cup on the table for each available chair) and taking equal shares away (subtracting) from each person, object, or space. Educators will provide opportunities for students to connect their understanding of subtraction (starting with the whole and taking away a part) to repeated subtraction. For example, if the educator has 12 balls, and each team gets 4 balls, how many teams will there be? By subtracting 4 from the whole repeatedly, we made 3 equal sets so there are 3 teams.

DLM Essential Element: M.EE.6.NS.2

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

See the document <u>Using Mini-Maps to Plan Instruction</u>.

M.EE.6.NS.2 Apply the concept of fair share and equal shares to divide.

Mini-Map for M.EE.6.NS.3 Subject: Mathematics

The Number System (NS) Grade: 6

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.NS.3 Solve two-factor multiplication problems with	M.6.NS.3 Fluently add, subtract, multiply, and divide multi-digit
products up to 50 using concrete objects and/or a calculator.	decimals using the standard algorithm for each operation.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Represent repeated	Demonstrate	Multiply numbers up to	Divide a number (up to
understanding of	addition problems in	multiplication by	12 by factors 1 to 5,	12) by one, two, three,
"separateness" by	the form of an	combining multiple sets	using manipulatives or	four, or five, and
recognizing objects that	equation, including	containing the same	repeated addition (e.g.,	determine the quotient
are not joined together.	displaying the addition	number of objects.	multiply 3 x 5 by adding	using diagrams or
Communicate	of the same numeral	Communicate	5 + 5 + 5 = 15).	manipulatives.
understanding of set by	more than twice (e.g., 3	understanding that the		Communicate
recognizing a group of	+ 3 + 3 + 3) and finding	number of sets times		understanding that the
objects sharing an	the sum by adding the	the number of objects		number of groups times
attribute. Communicate	same number a certain	in each set equals the		the number of objects
understanding of a	number of times (e.g., 3	total number of objects.		in each group equals
subset by recognizing a	+ 3 + 3 + 3 = 12).			the total number of
subset as a set or group	Communicate			objects (multiplication)
of objects within a	understanding of			and that the total
larger set that share an	repeated addition as			number of objects
attribute.	adding the same			divided by the number
	addend a given number			of groups equals the
	of times (e.g., in the			number of objects in
	repeated addition			each group (division).
	equation 3 + 3 + 3 + 3 =			

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	12, the addend 3 is			
	added four times).			

How is the Initial Precursor related to the Target? In order to solve multiplication problems, students must learn to organize items into groups/sets based on a common characteristic such as size, color, shape, or texture. Students learn how to sort items by separating a group of items into two groups (e.g., music I like/music I don't like; red fidgets/black fidgets). As students gain comfort sorting items into sets, they are encouraged to communicate their thought process by identifying and naming the characteristic that determines the set (e.g., color, length). Activities that require students to engage actively with the items will foster understanding of set, subsets, and separateness.

How is the Distal Precursor related to the Target? As students' understanding of labeling and counting sets develops, they will begin working on adding items to a set and combining sets to create a new set. Additionally, students will work on developing an understanding of equal shares by actively participating in one-to-one distribution of objects to person, objects to objects, and objects to available space (e.g., giving each person in the group two pencils; given four counters, they would line up four more counters in front of or on top of the first set; given three chairs at a table, the student would place a cup on the table for each available chair). As students learn to work with sets and connect their understanding of equal shares to sets, educators will provide students experience with combining multiple sets (e.g., 3 sets with 4 counters each) and represent the problem (e.g., 4 + 4 + 4= ?). Students will also learn to represent the problem in writing (e.g., the student is shown 4 equal sets each with 2 counters. The student counts the first set and writes a 2 or indicates 2, then writes or indicates the plus sign. The student repeats for all 4 sets and then indicates the equal sign and solves the problem.).

Instructional Resources

Released TestletsSee the Guide to Practice Activities and Released Testlets.Using Untested (UN) NodesSee the document Using Mini-Maps to Plan Instruction.

Link to Text-Only Map

M.EE.6.NS.3 Solve two-factor multiplication problems with products up to 50 using concrete objects and/or a calculator.

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.G.1 Solve real-world and mathematical problems about area using unit squares.	M.6.G.1 Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real world and
	mathematical problems.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Communicate	Calculate the area of a	Find the unknown	Communicate
understanding of	understanding that a	square or rectangle by	quantity in the word	understanding that
"separateness" by	unit square is a square	filling a figure with unit	problem by determining	length and width
recognizing objects that	with edge lengths of 1	squares or tiles and	the area of a rectangle.	measures of a rectangle
are not joined together.	unit and area of 1	counting the total		can be used to find the
Communicate generic	square unit.	number of unit squares		number of unit tiles
understanding of	Communicate	or tiles. Calculate the		needed to fill the
"some" as a certain	understanding of area	area of a square or		rectangle and that the
amount or a number of	as the measure of space	rectangle by counting		number of tiles equals
people or things.	contained within the	the number of square		the product of the
	outline or boundary of a	units drawn to cover		length and width.
	two-dimensional object	the area.		Calculate area of a
	or figure.			rectangle using the area
				formula (area = length x
				width).

How is the Initial Precursor related to the Target? In order to solve problems using unit squares, students at this level start with learning to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets with 1-4 items. Help students recognize when items are grouped together into a set or separated out. The educator presents a set, labels it, and then counts the items (e.g., two balls, 1, 2) and encourages students to use numerals to label and count the separate sets. Begin working on the quantifier "some" as students are developing an understanding of the quantities 1-4, using the students' communication system to demonstrate the use of the word "some". How is the Distal Precursor related to the Target? As students continue to develop their understandings of number and sets, they can also work on covering small rectangles with unit squares and counting each one as it is placed. Core vocabulary can be used to demonstrate the language associated with these concepts (e.g., all, all on, put on, it here, unit squares are to be placed on a rectangle side by side if one is on the diagonal the word turn can be used, finished).

Instructional Resources

Rel	eas	ed T	estl	ets
-----	-----	------	------	-----

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

M.EE.6.G.1 Solve real-world and mathematical problems about area using unit squares.

Mini-Map for M.EE.6.G.2 Subject: Mathematics Geometry (G) Grade: 6

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.G.2 Solve real-world and mathematical problems about	M.6.G.2 Find the volume of a right rectangular prism with
volume using unit cubes.	fractional edge lengths by packing it with unit cubes of the
	appropriate unit fraction edge lengths, and show that the
	volume is the same as would be found by multiplying the edge
	lengths of the prism. Apply the formulas V = <i>lwh</i> and V = <i>bh</i> to
	find volumes of right rectangular prisms with fractional edge
	lengths in the context of solving real-world and mathematical
	problems.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Communicate	Calculate the volume of	Solve word problems	Calculate volume of a
understanding of	understanding that	a solid figure by	involving the volume of	rectangular prism using
"separateness" by	volume is the space	counting the total	a rectangular prism by	the volume formula
recognizing objects that	enclosed by a shape or	number of unit cubes in	determining the volume	(volume = height x
are not joined together.	an object, that a unit	a solid figure. Calculate	of the prism. (The	length x width).
Recognize enclosure as	cube is a cube with	the volume of a	volume of a rectangular	
an enclosed space that	edge lengths of one unit	rectangular prism by	prism should be	
lies within a boundary	and a volume of one	packing the box with	determined by packing	
that distinguishes it	cubic unit, and that	unit cubes and counting	the prism with unit	
from the space that lies	volume can be	them.	cubes.)	
outside the boundary.	measured by counting			
	the number of unit			
	cubes needed to			
	completely fill a			
	container or space.			

How is the Initial Precursor related to the Target? In order to solve problems using unit cubes, students at this level start by exploring objects and experiencing putting various materials into various containers. Educators demonstrate the language of in/out, more/less, big/little, longer/shorter, taller/smaller, wider/thinner, etc.

How is the Distal Precursor related to the Target?

As students learn about how various materials do or do not fit in a given space, educators provide opportunities to compare and order by length, area, and capacity. Educators may use non-standard measurement tools such as hands or fingers to estimate length, blocks or squares for area, and sand or water for capacity.Educators should take care to use the word "volume" while defining and demonstrating its meaning as students are filling enclosed shapes or objects. While students do not need to say the word "volume", they do need to learn its meaning.

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

Link to Text-Only Map

Mini-Map for M.EE.6.SP.5

Subject: Mathematics Statistics and Probability (SP) Grade: 6

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.SP.5 Summarize data distributions shown in graphs or tables.	M.6.SP.5 Summarize numerical data sets in relation to their context, such as by: Reporting the number of observations. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Arrange objects in a	Communicate	Analyze data	Summarize data	Recognize appropriate
specific order (e.g.,	understanding that	distribution to	distribution by	measures of center,
smallest to largest).	distribution of data can	recognize outliers,	describing the overall	such as mean or
Group objects by some	be described by the	peaks, or symmetric	shape of data in terms	median, by analyzing
attribute value (e.g.,	overall shape of the	distribution. Recognize	of outliers, peaks, and	the overall shape of the
shape, size, texture,	distribution. Recognize	data values	symmetric distribution.	data distribution. For
numerical pattern).	that in a line plot, "x" is	substantially larger or		example, use the mean
	used to represent the	smaller than the other		to describe the center if
	data values, and labels	values as outliers.		the data distribution is
	are used to represent x-	Recognize peaks as data		symmetric, and use

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	axis, y-axis, and the title	values that most		median to describe the
	of the graph.	frequently occur.		center if the data
		Recognize symmetric		distribution is not
		distribution as		symmetric.
		distributions where the		
		left- and right-hand		
		sides of the		
		distributions are		
		roughly equal.		

How is the Initial Precursor related to the Target? In order to summarize data, students begin by learning to recognize what is the same and different between familiar items; color, shape, quantity, size, texture, and pattern. Educators should take care to use attribute words while defining and demonstrating their meaning. While students do not need to say these words, they do need to learn the meanings. Students will also begin to group two or more items in the same set based on an attribute (e.g., two tigers, bumpy balls and bumpy gravel, red spoons). As the students group two or more items, the educator will demonstrate the representation in a bar graph or line plot and encourage students to actively participate in its creation.

How is the Distal Precursor related to the Target? Students can actively participate in the creation of graphs and line plots by placing representations, x's, or dots for each response to the research question. When the graph or line plot is complete, the educator will encourage students to use their core vocabulary to describe the overall shape of the data and will also demonstrate the description (e.g., up, not up, same).

Instructional Resources

Released Testlets

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

M.EE.6.SP.5 Summarize data distributions shown in graphs or tables.

Mini-Map for M.EE.6.EE.1-2

Subject: Mathematics Expressions and Equations (EE) Grade: 6

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.EE.1-2 Identify equivalent number sentences.	 M.6.EE.1 Write and evaluate numerical expressions involving whole-number exponents. M.6.EE.2 Write, read, and evaluate expressions in which letters stand for numbers.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Combine two or more	Demonstrate	Represent addition or	Recognize a numerical	Recognize equivalent
sets of objects to form a	understanding of	subtraction word	expression that is	expressions by applying
new set. Compare two	addition by combining	problems or models	equivalent to a given	commutative and
or more sets containing	the objects of two or	with equations (e.g., 8	expression (e.g., 3 + 4 +	associative properties
objects to communicate	more sets, and	marbles + 3 marbles =	5 is equivalent to 4 + 3 +	of addition (e.g., the
whether a set has the	demonstrate	11 marbles). Recognize	5). Evaluate an equation	expression 5 + 8 is equal
same, different, or an	understanding of	that the unknown	to be true or false by	to 8 + 5 due to the
equal number of	subtraction by	quantity in an equation	determining whether	commutative property
objects than the other	removing some objects	is represented using a	the numerical value on	of addition).
set.	from a larger set.	symbol or letter (e.g., 5	both sides of an	
		+ <i>b</i> = 8).	equation is the same or	
			different (e.g., analyze	
			whether 5 + 7 = 8 + 4).	

How is the Initial Precursor related to the Target? Understanding how to evaluate equations and recognize equivalent expressions requires a student to be able to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. The educator presents a set, labels it (e.g., two balls, one marker, three CDs), counts the items, labels it again, and encourages students to use numbers to label and count the separate sets. Then, combine the sets, give it a new label, and count the set.

NOTE: Educators can work on the Initial Precursor level using the sets of numbers that students are working with.

How is the Distal Precursor related to the Target? As students begin to understand labeling and counting small sets, they begin to use the number sequence, and students become more adept at tracking individual objects and can recognize when items are added to a set or when items are taken away. Work on this skill using a variety of sets, labeling and counting the set, and moving items in and out of the set labeling and counting the set again.

NOTE: Educators can work on the Distal Precursor level using the sets of numbers that students working at the Target level are working with.

Instructional Resources

Released TestletsSee the Guide to Practice Activities and Released Testlets.Using Untested (UN) NodesSee the document Using Mini-Maps to Plan Instruction.

DLM Essential Element: M.EE.6.EE.1-2

Link to Text-Only Map

M.EE.6.EE.1-2 Identify equivalent number sentences.

Mini-Map for M.EE.6.EE.3

Subject: Mathematics Expressions and Equations (EE) Grade: 6

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.EE.3 Apply the properties of addition to identify	M.6.EE.3 Apply the properties of operations to generate
equivalent numerical expressions.	equivalent expressions.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Combine two or more	Represent addition or	Apply commutative	Create equivalent	Recognize or generate
sets of objects to form a	subtraction word	(e.g., 3 + 4 = 4 + 3) and	expressions by applying	an equivalent
new set. Compare two	problems or models	associative [e.g., 2 + (3	commutative and	expression involving
or more sets containing	with equations (e.g., 8	+ 5) = (2 + 3) + 5]	associative properties	addition or subtraction
objects to communicate	marbles + 3 marbles =	properties of addition	of addition (e.g., the	operations using
whether a set has the	11 marbles). Recognize	to add two or more	expression 5 + 8 is equal	commutative and
same, different, or an	that the unknown	numbers. Evaluate an	to 8 + 5 due to the	associative properties
equal number of	quantity in an equation	equation to be true or	commutative property	of addition and
objects than the other	is represented using a	false by determining	of addition).	multiplication [e.g.,
set.	symbol or letter (e.g., 5	whether the numerical		recognize that the
	+ <i>b</i> = 8).	value on both sides of		expression (8 + 6) x 5 is
		an equation is the same		equivalent to 5 x (6 +
		or different (e.g.,		8)].
		analyze whether 5 + 7 =		
		8 + 4).		

How is the Initial Precursor related to the Target? Understanding how to evaluate equations and using the properties of addition to create equivalent expressions requires a student to be able to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. The educator presents a set, labels it (e.g., two balls, one marker, three CDs), counts the items, labels it again, and encourages students to use numbers to label and count the separate sets. Then, combine the sets, give it a new label, and count the set.

NOTE: Educators can work on the Initial Precursor level using the sets of numbers that students working at the Target level are adding and subtracting. How is the Distal Precursor related to the Target? As students begin to understand labeling and counting small sets, they begin to use the number sequence and become more adept at tracking individual objects. Work on this skill using a variety of sets, labeling and counting the sets, and moving items in and out of the sets, labeling and counting the set again. Additionally, the educators will pair those sets with the symbolic representations for addition and subtraction (e.g., 3 + 2 = ?, 3 - 2 = ?).

NOTE: Educators can work on the Distal Precursor level using the sets of numbers that students working at the Target level are adding and subtracting.

Instructional Resources

Released Testlets			
See the <u>Guide to Practice Activities and Released Testlets</u> .			
Using Untested (UN) Nodes			
Using Untested (UN) Nodes			

M.EE.6.EE.3 Apply the properties of addition to identify equivalent numerical expressions.

Mini-Map for M.EE.6.EE.5-7

Subject: Mathematics Expressions and Equations (EE) Grade: 6

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.EE.5-7 Match an equation to a real-world problem in which variables are used to represent numbers.	M.6.EE.5 Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true. M.6.EE.6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. M.6.EE.7 Solve real-world and mathematical problems by writing and solving equations of the form $x + p = q$ and $px = q$ for cases in which p , q and x are all nonnegative rational numbers.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Combine two sets of	Represent addition or	Represent expressions	Represent a given real-	Solve real-world
objects to form a new	subtraction word	using variables and	world problem (e.g., Joe	problems with non-
set. Divide objects in a	problems or models	numbers (e.g., express	has 6 markers. Joe has	negative rational
set into two or more	with equations (e.g.,	subtract k from 12 as 12	some crayons. Joe has a	numbers by
subsets.	representing 6 marbles	- <i>k</i>). Recognize that the	total of 10 art supplies.	representing the
	plus 2 marbles equal 8	unknown quantity in an	How many crayons does	situation with a
	marbles as 6 + 2 = 8	equation is represented	Joe have?) with a	mathematical equation
	marbles).	using a symbol or letter	mathematical equation	(e.g., Mark has 3.5
		(e.g., 5 + <i>b</i> = 8).	(e.g., 6 + <i>x</i> = 10).	

		inches of string. Mark gets 1 more inch of string. Which equation shows how much string Mark has all together? 3.5 + 1 = x).

How is the Initial Precursor related to the Target? The knowledge needed to solve addition and subtraction realworld problems links back to an understanding of how to create sets, but it also requires learning to manipulate sets (i.e., combining and separating or partitioning). Provide students many opportunities to take a set of objects (e.g., tiles, linking cubes, buttons) and separate them based on a given characteristic (e.g., shape, color, size) into two distinct sets, and separate them again based on another characteristic. Guide students to notice how the set size changes each time the educator combines or partitions the sets.

How is the Distal Precursor related to the Target? As student understanding of combining and partitioning sets increases, educators should take care to use the words "addition" and "subtraction" while defining and demonstrating their meanings and as students combine and partition sets. While students do not need to say the words, they do need to learn the meanings. Educators provide lessons that help students represent addition and subtraction in multiple ways (e.g., using objects, fingers, drawings, sounds, acting out situations, and writing equations).

Instructional Resources

M.EE.6.EE.5-7 Match an equation to a real-world problem in which variables are used to represent numbers.