

Mini-Map for M.EE.5.NF.1

Subject: Mathematics Number and Operations—Fractions (NF) Grade: 5

Learning Outcome

DLM Essential Element	Grade-Level Standard	
M.EE.5.NF.1 Identify models of halves (1/2, 2/2) and fourths	M.5.NF.1 Add and subtract fractions with unlike denominators	
(1/4, 2/4, 3/4, 4/4).	(including mixed numbers) by replacing given fractions with	
	equivalent fractions in such a way as to produce an equivalent	
	sum or difference of fractions with like denominators.	

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Divide familiar shapes,	Identify the area model	Identify the area model	Identify the area model
understanding of	such as circles, squares,	that represents one half	that is divided into	that represents a given
"separateness" by	and/or rectangles, into	or one fourth of a	halves or fourths.	specified proper
recognizing objects that	two or more equal	familiar shape or object.	Identify the set model	fraction (e.g., 1/2, 1/3,
are not joined together.	parts. Divide a set with	Identify the set model	that is divided into	1/4, 1/7). Identify the
Communicate generic	up to 10 objects into	that represents one half	halves or fourths.	set model that
understanding of	two or more equal	or one fourth of a set of		represents a given
"some" as a certain	subsets.	objects.		specified proper
amount or a number of				fraction (e.g., 1/2, 1/3,
people or things.				1/4, 1/7).

How is the Initial Precursor related to the Target? In order to understand fractions, students start with learning to recognize two or more sets or groups of items. Work on this skill using a variety of sets with 1-4 items. Help students recognize when items are grouped together into a set or separated out. The educator presents a set, labels it, and then counts the items (e.g., two balls, 1, 2) and encourages students to use numbers to label and count the separate sets. As students are developing an understanding of the quantities 1-4, begin working on the quanitifier "some" by using the students' communication system to demonstrate the use of the word "some". How is the Distal Precursor related to the Target? As students begin to understand labeling and counting small sets (1-4), they begin to use the number sequence and become more adept at tracking individual objects. At this level, instruction should focus on one-to-one correspondence and authentic social encounters like distributing objects (e.g., passing out classroom materials, one per person) to people and aligning objects or people to available spaces (e.g., one note for parents in each backpack). These skills are the beginning of partitioning sets into equal subsets.

Instructional Resources

Released Testlets

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

M.EE.5.NF.1 Identify models of halves (1/2, 2/2) and fourths (1/4, 2/4, 3/4, 4/4).

Mini-Map for M.EE.5.NF.2

Subject: Mathematics Number and Operations—Fractions (NF) Grade: 5

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.5.NF.2 Identify models of thirds (1/3, 2/3, 3/3) and tenths	M.5.NF.2 Solve word problems involving addition and
(1/10, 2/10, 3/10, 4/10, 5/10, 6/10, 7/10, 8/10, 9/10, 10/10).	subtraction of fractions referring to the same whole, including
	cases of unlike denominators, e.g., by using visual fraction
	models or equations to represent the problem. Use benchmark
	fractions and number sense of fractions to estimate mentally
	and assess the reasonableness of answers.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Divide familiar shapes,	Recognize an area	Recognize the area	Recognize the area
understanding of	such as circles, squares,	model representing the	model that is divided	model that represents a
"separateness" by	and/or rectangles, into	fractions one third or	into thirds or tenths	specified proper
recognizing objects that	two or more equal	one tenth when	when presented with	fraction.
are not joined together.	parts.	presented with three	three different area	
Communicate generic		different area models.	models.	
understanding of				
"some" as a certain				
amount or a number of				
people or things.				

How is the Initial Precursor related to the Target? In order to understand fractions students start with learning to recognize two or more sets or groups of items. Work on this skill using a variety of sets with 1-4 items. Help students recognize when items are grouped together into a set or separated out. As educators present a set, label it, and then count the items (e.g., two balls, 1, 2) and encourage students to use numbers to label and count the separate sets. As students are developing an understanding of the quantities 1-4, begin working on the quanitifier "some" by using the students' communication system to demonstrate the use of the word "some". How is the Distal Precursor related to the Target? As students begin to understand labeling and counting small sets (1-4), they begin to use the number sequence and become more adept at tracking individual objects. At this level, instruction should focus on one-to-one correspondence and authentic social encounters like distributing objects (e.g., passing out classroom materials, one per person) to people and aligning objects to available spaces (e.g., one note for parents in each backpack). These skills are the beginning of partitioning sets into equal parts.

Instructional Resources

Released Testlets

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

M.EE.5.NF.2 Identify models of thirds (1/3, 2/3, 3/3) and tenths (1/10, 2/10, 3/10, 4/10, 5/10, 6/10, 7/10, 8/10, 9/10, 10/10).

Mini-Map for M.EE.5.NBT.1

Subject: Mathematics Number and Operations in Base Ten (NBT) Grade: 5

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.5.NBT.1 Compare numbers up to 99 using base ten	M.5.NBT.1 Recognize that in a multi-digit number, a digit in one
models.	place represents 10 times as much as it represents in the place
	to its right and 1/10 of what it represents in the place to its left.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Count all objects in a	Use models such as	Use models such as	Compare two numbers
understanding of	set to communicate the	concrete manipulatives,	concrete manipulatives,	up to 100 using the
"separateness" by	total number of objects	diagrams, pictures, or	diagrams, pictures, or	symbols >, <, and = to
recognizing objects that	in that set. Identify sets	technology to compare	technology to compare	show that one number
are not joined together.	having the same	two sets of objects up	two sets of objects up	is greater than, less
Communicate	number of objects.	to 10, and communicate	to 100, and	than, or equal to the
understanding of set by	Identify a set containing	that the number of	communicate that the	other number. Order
recognizing a group of	a different number of	objects in one set is	number of objects in	three or more two-digit
objects sharing an	objects than the other	greater than, less than,	one set is greater than,	numerals from greatest
attribute.	two sets. Recognize a	or equal to the number	less than, or equal to	to least or least to
	set containing more or	of objects in the other	the number of objects	greatest.
	fewer objects than the	set.	in the other set.	
	other set.			

How is the Initial Precursor related to the Target? Comparing numbers requires a student to be able to recognize two or more sets or groups of items. Work on this skill using a variety of sets. To help students recognize when items are grouped together into a set or separated out, the educator presents a set, labels it (e.g., two balls, one bear, three blocks), counts the items, labels it again, and encourages students to use numbers to label and count the separate sets.

NOTE: Educators can work on the Initial Precursor level using the sets of numbers that students working at the Target level are working on, but when using the larger sets, help students notice the difference in overall area when sets are larger or smaller. How is the Distal Precursor related to the Target? As students begin to understand labeling and counting small sets (1-4), they begin to use the number sequence and become more adept at tracking individual objects, recognizing same, different, more, and less on the basis of overall area or discrete number. Work on this skill using a variety of sets, labeling and counting the sets, moving items in and out of the sets, and labeling and counting the sets again. Draw the students' attention to the change that occurs when items are moved in and out of a set.

NOTE: When working on the Distal Precursor level, students will count and compare smaller sets using both overall area and discrete number, but when using the larger sets that students working at the Target level are working on, they will compare using overall area rather than discrete number.

Instructional Resources

Released Testlets
See the <u>Guide to Practice Activities and Released Testlets</u> .
Using Untested (UN) Nodes

M.EE.5.NBT.1 Compare numbers up to 99 using base ten models.

Map Key

Initial Precursor

Distal Precursor

Target

Successor

Untested

Proximal Precursor

Mini-Map for M.EE.5.NBT.3

Subject: Mathematics Number and Operations in Base Ten (NBT) Grade: 5

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.5.NBT.3 Compare whole numbers up to 100 using	M.5.NBT.3 Read, write, and compare decimals to thousandths.
symbols (<, >, =).	

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Use models such as	Compare two numbers	Compare two numbers	Compare two numbers
understanding of	concrete manipulatives,	up to 10 using the	up to 100 using the	up to 1,000 using the
"separateness" by	diagrams, pictures, or	symbols >, <, and = to	symbols >, <, and = to	symbols >, <, and = to
recognizing objects that	technology to compare	show that one number	show that one number	show that one number
are not joined together.	two sets of objects up	is greater than, less	is greater than, less	is greater than, less
Communicate	to 10, and communicate	than, or equal to the	than, or equal to the	than, or equal to the
understanding of set by	that the number of	other number.	other number.	other number. Order
recognizing a group of	objects in one set is			three or more two-digit
objects sharing an	greater than, less than,			numerals from greatest
attribute.	or equal to the number			to least or least to
	of objects in the other			greatest.
	set.			

How is the Initial Precursor related to the Target? In order to compare numbers (e.g., <, >, =) students need many opportunities to experience quantities and numerals in context across the school day. Educators provide lessons using a variety of sets. Teach students to recognize when items are grouped together into a set or separated out. The educator presents a set, labels it (e.g., two balls, one bear, three blocks), counts the items, labels it again, and encourages students to use numerals to label and count the separate sets.

How is the Distal Precursor related to the Target?

As students gain experience with creating simple sets, counting in context, and developing one-to-one correspondence, educators will introduce comparisons through terms such as same/different, more/less, 1 more/1 less. Continue to count anything and everything across the school day and help students compare amounts.

Instructional Resources

Released Testlets
See the Guide to Practice Activities and Released Testlets.
Using Untested (UN) Nodes

M.EE.5.NBT.3 Compare whole numbers up to 100 using symbols (<, >, =).

Mini-Map for M.EE.5.NBT.4

Subject: Mathematics Number and Operations in Base Ten (NBT) Grade: 5

Learning Outcome

DLM Essential Element	Grade-Level Standard	
M.EE.5.NBT.4 Round two-digit whole numbers to the nearest	M.5.NBT.4 Use place value understanding to round decimals to	
10 from 0-90.	any place.	

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Without counting each	Recognize a unit as a	Communicate	Round numbers 0-100	Round numbers 100
object, recognize the	group of countable	understanding that the	to the nearest ten by	and beyond to the
number of objects in a	objects. Recognize ten	digit in the tens place is	using a rounding	nearest hundred by
set (up to four).	as a group of 10	formed by grouping	strategy (e.g., number	using a rounding
	individual objects or 1	objects by tens and the	line, place value).	strategy (e.g., number
	ten. Recognize a group	digit in the ones place is		line, place value).
	of 10-19 objects as 1	composed of individual		
	ten and a group of	objects. Communicate		
	remaining ones and a	understanding of how		
	group of 20 or more	to round numbers to		
	objects as multiple sets	the nearest ten using		
	of 10 and a group of	place-value: the tens		
	remaining ones.	place is rounded up if		
	Decompose or	the digit in the ones		
	represent a given	place equals 5 or more		
	number in terms of tens	(e.g., 45 is rounded to		
	and ones (e.g., 43 = 4	50) and is rounded		
	tens and 3 ones).	down otherwise (e.g.,		
		32 is rounded down to		
		30).		

How is the Initial Precursor related to the Target?

To round numbers, students start by knowing number names, the count sequence, one-to-one correspondence and working on understanding cardinality or number. These procedures and concepts develop through many experiences in early counting. Perceptual subitizing happens when the student is able to name the amount (1-3 items) without actually counting them. For example, when an educator asks the student to get their shoes and asks, "How many shoes do you have?" The student would reply, "two" without using the count sequence of one, two. This only happens when students have been given many experiences counting small numbers with many different contexts and materials.

NOTE: Students who are blind will learn to use tactile enumeration for 1-3 items.

How is the Distal Precursor related to the Target?

As students continue to gain experience in early counting (1-10 items), educators will introduce the concept that 10 can be grouped into one unit. Educators will use models that help students perceive a group of 10 and some more (e.g., bundles, ten-frames, number line, arrays). Teen numbers are an important part of understanding this concept.

Instructional Resources

Released Testlets		
See the Guide to Practice Activities and Released Testlets.		
Using Untested (UN) Nodes		

M.EE.5.NBT.4 Round two-digit whole numbers to the nearest 10 from 0-90.

Mini-Map for M.EE.5.NBT.5

Subject: Mathematics Number and Operations in Base Ten (NBT) Grade: 5

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.5.NBT.5 Multiply whole numbers up to 5 × 5.	M.5.NBT.5 Fluently multiply multi-digit whole numbers using the standard algorithm.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Communicate	Demonstrate	Multiply numbers up to	Communicate
understanding of	understanding that in	multiplication by	12 by factors 1 to 5,	understanding of
"separateness" by	repeated addition	combining multiple sets	using manipulatives or	multiplication as the
recognizing objects that	problems, a single	containing the same	repeated addition (e.g.,	number of groups times
are not joined together.	numerical value is	number of objects.	multiply 3 x 5 by adding	the number of objects
Communicate	added repeatedly (e.g.,	Communicate	5 + 5 + 5 = 15).	in each group (with the
understanding of set by	6 + 6 + 6) and that one	understanding that the		understanding that
recognizing a group of	way to add a number a	number of sets times		each group contains an
objects sharing an	given number of times	the number of objects		equal number of
attribute. Communicate	is by using skip-counting	in each set equals the		objects) and that the
understanding of a	as a strategy (e.g., 6 + 6	total number of objects.		total number of objects
subset by recognizing a	+ 6 can be added as 6,			(i.e., the product) can
subset as a set or group	12, 18). Represent			then be divided by the
of objects within a	repeated addition 12,			number of groups to
larger set that share an	18). Represent repeated			equal the number of
attribute.	addition problems using			objects in each group,
	an equation showing			and vice versa.
	the addition of the			

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	same numeral the			
	required number of			
	times, and find the			
	correct sum using an			
	addition strategy (e.g., 5			
	+ 5 + 5 = 15).			

How is the Initial Precursor related to the Target? In order to understand multiplication, students must learn to organize items into groups/sets based on a common characteristic such as size, color, shape, texture, or flavor. Students learn how to sort items by separating a group of items into two groups (e.g., vehicles and animals). As students gain comfort sorting items into sets, they are encouraged to use their language to convey their thought process by identifying and naming the characteristic that determines the set (e.g., wheels, legs). Activities that require students to engage actively with the items will foster the students' understanding of set, subsets, and separateness (e.g., the game "concentration" where the cards highlight one characteristic in a group of similar cards [e.g., shape]; incorporating creating sets into everyday activities [e.g., during independent reading, the teacher gives a student a pile of books and asks them to create two sets, then helps the student determine the criteria they want to use to sort them, such as books I want to read/books I don't want to read; bugs/dogs; sports/gaming]).

Instructional Resources

Released Testlets		
See the <u>Guide to Practice Activities and Released Testlets</u> .		
Using Untested (UN) Nodes		
Using Untested (UN) Nodes		

How is the Distal Precursor related to the Target? As students gain an understanding of how to group items into sets, educators will begin to help students connect their knowledge of sets with their knowledge of counting and addition. Educators will provide multiple experiences counting sets and combining sets using multiple models. As student understanding progresses, educators will provide experience with multiple (3-4) small sets, and students will use repeated addition to find the total. They can check their work by counting the individual items in each group. Educators should take care to use words like "some," "all," "put," and "add" while defining and demonstrating their meaning. While students do not need to say these words, they do need to learn the meanings.

M.EE.5.NBT.5 Multiply whole numbers up to 5 × 5.

Mini-Map for M.EE.5.NBT.6-7

Subject: Mathematics Number and Operations in Base Ten (NBT) Grade: 5

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.5.NBT.6-7 Illustrate the concept of division using fair and	M.5.NBT.6 Find whole-number quotients of whole numbers
equal shares.	with up to four-digit dividends and two-digit divisors, using
	strategies based on place value, the properties of operations,
	and/or the relationship between multiplication and division.
	Illustrate and explain the calculation by using equations,
	rectangular arrays, and/or area models.
	M.5.NBT.7 Add, subtract, multiply, and divide decimals to
	hundredths, using concrete models or drawings and strategies
	based on place value, properties of operations, and/or the
	relationship between addition and subtraction; relate the
	strategy to a written method and explain the reasoning used.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Recognize two sets that	Divide a set of 12 or	Divide a set containing	Communicate
understanding of	contain the same	fewer objects into two	10 or fewer objects into	understanding of
"separateness" by	number of objects, and	or more distinct	equal subsets (e.g.,	division as total number
recognizing objects that	name those sets as	subsets. (These subsets	divide a set consisting	of objects (i.e.,
are not joined together.	"equal" sets.	may or may not contain	of 10 counters into two	dividend) divided by
Communicate	Communicate	an equal number of	subsets with 5 counters	number of groups (i.e.,
understanding of set by	understanding that	objects.)	each).	divisor) equals number
recognizing a group of	"same amount" means			of objects in each group
objects sharing an	"equal." Create a set			(i.e., quotient) (e.g.,
attribute. Communicate	that contains the same			20/5 = 4). Understand
understanding of a	number of objects as			that division is similar to
subset by recognizing a	the given set.			repeated subtraction,

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
subset as a set or group				where a single number
of objects within a				(i.e., divisor) is
larger set that share an				subtracted repeatedly
attribute.				from a given number
				(i.e., dividend) and the
				quotient equals the
				number of times the
				number is subtracted
				(e.g., 20/5 = 20 - 5 - 5 -
				5 - 5 = 0; thus, the
				quotient = 4).

How is the Initial Precursor related to the Target? In order to understand division, students must learn to organize items into groups/sets based on a common characteristic such as size, color, shape, or texture. Students learn how to sort items by separating a group of items into two groups (e.g., vehicles and animals). As students gain comfort sorting items into sets, they are encouraged to use their language to convey their thought process by identifying and naming the characteristic that determines the set (e.g., wheels, legs). Activities that require students to engage actively with the items will foster the students' understanding of set, subsets, and separateness (e.g., the game "concentration" where the cards highlight one characteristic in a group of similar items [e.g., color] by which the items are grouped; incorporating creating sets into everyday activities [e.g., during independent reading, the teacher gives a student a pile of books and asks them to create two sets, helping the student determine the criteria they want to use to sort them, such as books I want to read/books I don't want to read; bugs/dogs; sports/gaming]).

How is the Distal Precursor related to the Target? As students gain an understanding of how to group items into sets, educators will begin to help students connect their knowledge of sets with their knowledge of counting. Educators will provide multiple experiences counting sets and combining sets using multiple models (see below for examples). Educators also need to introduce the concept of equal sets using the students' background knowledge of same and different.

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

See the document <u>Using Mini-Maps to Plan Instruction</u>.

M.EE.5.NBT.6-7 Illustrate the concept of division using fair and equal shares.

Mini-Map for M.EE.5.G.1-4 Subject: Mathematics Geometry (G)

Grade: 5

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.5.G.1-4 Sort two-dimensional figures and identify the attributes (angles, number of sides, corners, color) they have in common.	 M.5.G.1 Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., <i>x</i>-axis and <i>x</i>-coordinate, <i>y</i>-axis and <i>y</i>-coordinate). M.5.G.2 Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. M.5.G.3 Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. M.5.G.4 Classify two-dimensional figures in a hierarchy based on properties.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize "same" as	Group together two-	Communicate attribute	Compare different	Compare different
the object that shares	dimensional shapes that	values of a shape, such	shapes and	shapes and identify
all of the same	are the same size and	as the number of sides	communicate common	similarities and
attributes as other	have the same	or number of corners	attributes shared by	differences between
objects in a group.	orientation. Group	(e.g., a square has four	them (e.g., a square and	their attributes (e.g., a
Recognize "different" as	together two-	sides).	a rectangle have four	square and a rectangle
the object that shares	dimensional shapes that		sides).	have four sides, but a
some or none of the	are different sizes			rectangle has two pairs
attributes as other	and/or have different			of congruent sides and
objects in a group.	orientations.			a square has four
				congruent sides).

) focusing student attention

How is the Initial Precursor related to the Target? Being able to analyze shapes requires a student to recognize when basic objects and shapes are the same or different. Work on this understanding by providing students with a shape and naming it (e.g., this is a square). Then provide multiple examples of the same shape so students can make comparisons

on the characteristics that make this a particular shape (e.g., a square has 4 sides that are the same size). As students explore shapes, label them and describe them as "same" or "different". **NOTE:** When presenting the same shape for comparison, do use

shapes with different colors, textures, sizes, and orientation so that students understand the attribute that makes it that shape (e.g., 4 sides that are the same size). How is the Distal Precursor related to the Target? As students develop an understanding of same and different shapes, provide opportunities for students to classify or group the same shapes based on the shape size (e.g., this is a big square, this is a little square). As students progress with identifying the size of shapes, the educator can begin to introduce different orientations of the shape.

NOTE: As new attributes (e.g., size and orientation) are introduced, be sure to support the student in remembering that the attribute doesn't change the name of the shape.

(e.g.,

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

See the document <u>Using Mini-Maps to Plan Instruction</u>.

M.EE.5.G.1-4 Sort two-dimensional figures and identify the attributes (angles, number of sides, corners, color) they have in common.

	Мар Кеу	
IP	Initial Precursor	
DP	Distal Precursor	
PP	Proximal Precursor	
Т	Target	
S	Successor	
UN	Untested	
Boxes indicate tested		

Mini-Map for M.EE.5.MD.3 Subject: Mathematics

Measurement and Data (MD) Grade: 5

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.5.MD.3 Identify common three-dimensional shapes.	M.5.MD.3 Recognize volume as an attribute of solid figures and
	understand concepts of volume measurement.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Notice or pay attention	Recognize "same" as	Match two three-	Recognize three-	Communicate different
to a new stimulus (e.g.,	the object that shares	dimensional shapes	dimensional shapes	attribute values (e.g.,
object, task, sound)	all of the same	(e.g., spheres,	such as spheres, cones,	number of sides,
introduced in the	attributes as other	rectangular prisms,	cubes, and cylinders.	number of angles,
environment. (Students	objects in a group.	cubes, pyramids) that		orientation, size) of
may use the methods of	Recognize "different" as	are the same size and		spheres, cylinders,
eye gaze, pointing, etc.,	the object that shares	have either the same or		cubes, and cones.
to show they have	some or none of the	different orientation.		Describe objects in the
noticed the new	attributes as other	Match two three-		real world using
stimuli.)	objects in a group.	dimensional shapes		attributes of three-
		(e.g., spheres,		dimensional shapes
		rectangular prisms,		(e.g., describing a door
		cubes, pyramids) that		as rectangular, a roll of
		are different sizes and		paper towels as a
		have either the same or		cylinder).
		different orientation.		

How is the Initial Precursor related to the Target?

In order to identify three-dimensional shapes, students must first begin by learning to notice what is new. In the context of this EE, educators should work on attending while interacting with real objects that have definable shapes (e.g., cylindar, cube, cone). As students' attention to the objects increases, the educator draws the students' attention to the object and labels them (e.g., "This is a cube, it has 6 sides" or "this is a cone it has a round bottom and a pointy top"), and the student observes, feels, or otherwise interacts with it. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different.

How is the Distal Precursor related to the Target?

Now that students have experience with three-dimensional shapes and objects they need to begin learning about how they are the "same" and "different." Provide instruction that focuses on creating sets that are grouped together in meaningful ways. Students do not have to label the shapes, but they do need to be able to match and identify items in a group based on the rule or attribute. For this Essential Element, it is important to use three-dimensional objects to create sets. These types of activities support students in understanding what attributes to pay attention to and what attributes to ignore based on the goal of the activity.

NOTE: Notice these activities are not just about sorting. The student is comparing an item or group of items to multiple items and learning what attribute he/she should focus on. This should be done with real objects to begin with rather than pictures on a worksheet or folder activity. "Find my match" is an easier activity than "What's my rule" so if students are really struggling to find the rule provide more experiences with finding the match.

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

See the document <u>Using Mini-Maps to Plan Instruction</u>.

M.EE.5.MD.3 Identify common three-dimensional shapes.

	Мар Кеу	
IP	Initial Precursor	
DP	Distal Precursor	
PP	Proximal Precursor	
Т	Target	
S	Successor	
UN	Untested	
Boxes indicate tested		

Mini-Map for M.EE.5.MD.4-5

Subject: Mathematics Measurement and Data (MD) Grade: 5

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.5.MD.4-5 Determine the volume of a rectangular prism by	M.5.MD.4 Measure volumes by counting unit cubes, using cubic
counting units of measure (unit cubes).	cm, cubic in., cubic ft, and improvised units.
	M.5.MD.5 Relate volume to the operations of multiplication
	and addition, and solve real-world and mathematical problems
	involving volume.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Communicate	Communicate	Calculate the volume of	Solve word problems
understanding of	understanding that	understanding that the	a rectangular prism by	involving the volume of
"separateness" by	volume is the space	volume of a solid figure	packing a box with unit	a rectangular prism by
recognizing objects that	enclosed by a three-	can be determined by	cubes and counting	determining the volume
are not joined together.	dimensional shape or	filling the figure with	them.	of the prism. (The
Recognize enclosure as	an object.	unit cubes and that the		volume of a rectangular
an enclosed space that	Communicate	volume can be		prism should be
lies within a boundary	understanding that a	calculated by counting		determined by packing
that distinguishes it	unit cube is a cube with	the number of unit		the prism with unit
from the space that lies	edge lengths of 1 unit	cubes.		cubes.)
outside the boundary.	and a volume of 1 cubic			
	unit.			

How is the Initial Precursor related to the Target? Calculating volume using unit cubes requires a student to be able to recognize that the items are seperate from one another and can be grouped together. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. Create these sets so that they are physically grouped together (e.g., enclosure; two or more boxes, two or more paper circles, two or more strings that can enclose the set). As educators present a set, they label it (e.g., two balls, one marker, three CDs), count the items, label it again, and encourage students to use numerals to label and count the separate sets. Use tools like the ten-frame to point out whole and parts (e.g., a row of 5 dots and a row of 4 dots are parts or subsets of 9).

How is the Distal Precursor related to the Target? Once students begin to understand that items can be grouped together and counted (even if their counting is not yet accurate), educators can begin supporting students in understanding that many attributes can be measured even when using the same object (e.g., length, width, volume). For these students working at the Distal Precursor linkage level, educators provide many experiences with filling containers with different materials and helping students notice which materials fill all of the container and which leave gaps. When students start noticing the difference educators can begin introducing "fair" comparisons (e.g., when it's hard to tell which will hold more we can use a tool [unit cube] to help us). Students need multiple experiences measuring different attributes (e.g., Which container is taller? Wider? Which holds the most?) and comparing the unit of measure (e.g., unit cube, inches, number of paperclips). As students fill rectangular containers with unit cubes, educators teach the rule of no gaps or overlaps and support students in learning to count accurately.

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

See the document <u>Using Mini-Maps to Plan Instruction</u>.

M.EE.5.MD.4-5 Determine the volume of a rectangular prism by counting units of measure (unit cubes).

	Map Key	
IP	Initial Precursor	
DP	Distal Precursor	
PP	Proximal Precursor	
т	Target	
S	Successor	
UN	Untested	
Boxes indicate tested nodes		

Mini-Map for M.EE.5.MD.1.a

Subject: Mathematics Measurement and Data (MD) Grade: 5

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.5.MD.1.a Tell time using an analog or digital clock to the	M.5.MD.1.a Convert among different-sized standard
half or quarter hour.	measurement units within a given measurement system (e.g.,
	convert 5 cm to 0.05 m), and use these conversions in solving
	multi-step, real-world problems.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Show interest in and	Recognize attributes or	Identify the hour and	Tell time to the nearest	Communicate
focused attention to a	characteristics of an	minute hands on an	half hour (e.g., 4:30,	understanding (e.g.,
task, object, or any	object that are	analog clock, with the	7:30) or quarter hour	write, draw) of how
environment stimulus.	measurable (e.g.,	understanding that	(e.g., 3:15, 6:45, 9:15)	hours and minutes are
Recognize "different" as	length, weight, time).	each number on the	using both an analog	represented on analog
the object that shares		clock represents a	and digital clock.	and digital clocks to
some or none of the		specific hour (e.g.,		represent time in the
attributes as other		when the hour hand is		standard format (e.g.,
objects in a group.		at 6, it represents 6		5:35).
		o'clock). Recognize		
		hours and minutes on a		
		digital clock, such that		
		the numeral on the left		
		side of the colon		
		represents hours and		
		the numeral on the		
		right side of the colon		
		represents minutes.		

How is the Initial Precursor related to the Target? In order to understand the passage of time and ultimately to tell time and understand its relevance, students begin by learning to focus their attention and recognize when things in their environment change or are different. In the context of learning to tell time, educators can help students attend to what is happening and contrast it with what will happen next or what happened in the past. They can draw students' attention to changes and help them notice new and different things in the environment, especially when those new and different things are associated with the passage of time.

How is the Distal Precursor related to the Target? In the context of an Essential Element addressing the ability to tell time, recognizing measurable attributes refers to attributes that begin to mark time. For example, students recognize attributes such as the beginning and ending of an activity; things that are accomplished first then next; and specific time concepts such as day, night, today, tomorrow, and yesterday.

Instructional Resources

M.EE.5.MD.1.a Tell time using an analog or digital clock to the half or quarter hour.

Mini-Map for M.EE.5.MD.1.b

Subject: Mathematics Measurement and Data (MD) Grade: 5

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.5.MD.1.b Use standard units to measure weight and	M.5.MD.1.b Convert among different-sized standard
length of objects.	measurement units within a given measurement system (e.g.,
	convert 5 cm to 0.05 m), and use these conversions in solving
	multi-step, real-world problems.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize attributes or	Recognize attributes or	Directly compare	Communicate	Estimate the length of
characteristics of an	characteristics of an	lengths of two or more	understanding of using	an object in inches or
object, such as color,	object that are	objects and order these	an appropriate tool to	feet. Estimate the mass
orientation, length,	measurable (e.g.,	objects from shortest to	measure the length and	of an object in ounces
width, and weight.	length, weight, time).	longest, or vice versa.	mass of an object.	or pounds.
		Directly compare	Measure the length of	
		masses of two or more	an object in inches or	
		objects and order these	feet and the mass of an	
		objects from the	object in pounds or	
		heaviest to the lightest,	ounces.	
		or vice versa.		

How is the Initial Precursor related to the Target? In working toward learning to use standard units to measure for weight and length of objects, students begin by learning to notice the attributes of an object. The educator draws the students' attention to an object or stimulus, labels it, and describes it, and the student observes, feels, or otherwise interacts with it. At this level, students are working on a single attribute within a set (e.g., these fit the category [shape, color, size], these do not).

One Attribute

How is the Distal Precursor related to the Target? As students' attention to objects develops, educators present a wide variety of attribute materials that can be sorted and classified in different ways (e.g., leaves, seashells, hair color, long/short, size, short/tall, shape, thickness, solids/stripes). Students will work on sorting the materials based on a given rule (e.g., attribute) and with the educator's support, they will begin to create and communicate their own rules for sorting the materials. Additionally, educators should provide opportunities for students to make comparisons within and across materials. Below is an example within and across. Attribute: the color red.

Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

See the document <u>Using Mini-Maps to Plan Instruction</u>.

M.EE.5.MD.1.b Use standard units to measure weight and length of objects.

Mini-Map for M.EE.5.MD.1.c

Subject: Mathematics Measurement and Data (MD) Grade: 5

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.5.MD.1.c Indicate relative value of collections of coins.	M.5.MD.1.c Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real-world problems.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize an object	Recognize coins and/or	Identify pennies, dimes,	Communicate that a	Find the total value of a
with a specific attribute	dollar bills as money,	nickels, and quarters	number of coins of a	set containing different
value (e.g., an object	and recognize that they	when shown different	lesser value can be	types of coins (e.g., add
with four sides).	have value when	coins. Communicate	worth the same as one	the values of a nickel
	compared to a piece of	that a penny is worth 1	coin of a greater value	and a quarter).
	paper.	cent, a nickel is worth 5	(e.g., five pennies have	
		cents, a dime is worth	the same value as a	
		10 cents, and a quarter	nickel, 10 pennies have	
		is worth 25 cents.	the same value as a	
			dime, two nickels have	
			the same value as one	
			dime, 25 pennies have	
			the same value as one	
			quarter, and five nickels	
			have the same value as	
			one quarter).	

How is the Initial Precursor related to the Target? In working toward learning to determine the value of coins, students begin by experiencing coins in three ways. First, the educator draws the students' attention to the various coins, labeling and describing them, and letting students observe, feel, or otherwise interact with them. At the same time, students need to experience money in context (e.g., cafeteria, school store, community outing) and experience the exchange of money for a product or service. Additionally, educators will provide students with early counting activities, which can include pennies.

How is the Distal Precursor related to the Target? As students learn to recognize coins from other objects, educators will provide experiences for students to learn the names and value of the coins. This can be done by continuing to provide many opportunities and experiences of using money in context and making connections to their knowledge of counting.

Instructional Resources

Released Testlets

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

M.EE.5.MD.1.c Indicate relative value of collections of coins.

Mini-Map for M.EE.5.MD.2

Subject: Mathematics Measurement and Data (MD) Grade: 5

Learning Outcome

DLM Essential Element	Grade-Level Standard	
M.EE.5.MD.2 Represent and interpret data on a picture graph,	M.5.MD.2 Make a line plot to display a data set of	
line plot, or bar graph.	measurements in fractions of a unit (1/2, 1/4, 1/8). Use	
	operations on fractions for this grade to solve problems	
	involving information presented in line plots.	

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Form a pair by putting	Group together objects	Use bar, picture, or line	Represent data using	Draw inferences or
together two different	by attribute values such	graphs to answer	bar graphs, picture	make predictions by
objects (e.g., a toy truck	as shape or size (e.g.,	explicit questions for	graphs, and line plots.	interpreting
and a toy car).	group together a	which the obvious	Interpret or integrate	information presented
Recognize attribute	square, a rectangle, and	answer is on the graph	information on these	on a bar graph, picture
values of an object (e.g.,	a rhombus, as they all	(e.g., on a bar graph	types of graphs to	graph, or line plot (e.g.,
a square has four sides).	have four sides). Order	representing favorite	answer questions (e.g.,	on the bar graph
	objects by following a	ice cream of students in	on the bar graph	representing the
	specific rule (e.g.,	a class, identify and	representing students'	number of pizzas
	arrange three objects	communicate the	favorite ice cream, how	required for a certain
	with different sizes	number of students	many more students	number of people,
	from the smallest to	who like chocolate-	like strawberry than	predict the number of
	largest).	flavor ice cream).	chocolate ice cream?).	pizzas needed for 20
				people).

How is the Initial Precursor related to the Target? In order to be able to understand data on a graph, students begin learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "these are two red cubes and two blue cubes", "you have two fidgets; one is big and one is small but they are both fidgets"), and the student observes, feels, or otherwise interacts with it. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different. How is the Distal Precursor related to the Target?

As the students' attention to objects increases, educators will begin to draw the students' attention to what is the same and different between familiar items: color, shape, quantity (1-4), size, texture, and pattern. Educators should take care to use attribute words while defining and demonstrating their meaning. While students do not need to say these words, they do need to learn the meanings. Students will also begin to group two or more items in the same set based on an attribute (e.g., two tigers, bumpy balls and bumpy gravel, red spoons). As the students group two or more items, the educator will demonstrate the representation in a bar or picture graph and encourage students to actively participate in the creation of the graph.

Instructional Resources

Released Testlets				
See the <u>Guide to Practice Activities and Released Testlets</u> .				
Using Untested (UN) Nodes				
See the document Using Mini-Mans to Plan Instruction				

M.EE.5.MD.2 Represent and interpret data on a picture graph, line plot, or bar graph.

Mini-Map for M.EE.5.OA.3

Subject: Mathematics Operations and Algebraic Thinking (OA) Grade: 5

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.5.OA.3 Identify and extend numerical patterns.	M.5.OA.3 Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Group together objects	Recognize patterns (or	Recognize a repeating	Communicate the next	Predict an element in a
by attribute values such	cycles) that exist in	pattern as a pattern	term in a repeating,	repeating, growing, and
as shape or size (e.g.,	nature (e.g., seasons	that has a core unit	growing, and shrinking	shrinking pattern by
group together a	occur in a pattern, day	repeated over and over	pattern, consisting of	analyzing a given
square, a rectangle, and	and night occur in a	(e.g., 1, 1, 2, 1, 1, 2).	numerals or letters, by	pattern, determining its
a rhombus, as they all	pattern) or in everyday	Determine the core unit	recognizing the core	core unit or the pattern
have four sides).	life (e.g., music, P.E.,	in a pattern that	unit or the pattern rule	rule, and applying it
Contrast or distinguish	and art classes occur in	repeats over and over	and applying it to the	beyond just the next
objects based on	a pattern in school).	again. Recognize a	pattern (e.g., the	term (e.g., the pattern
attributes such as		growing pattern as a	pattern rule in the	rule in the pattern 3, 6,
shape, size, texture, and		pattern that increases	pattern 3, 6, 9, 12 is	9, 12 is "add 3," so the
numerical pattern.		(e.g., 3, 6, 9, 12) and a	"add 3," so the next	sixth term in the
Order objects by		shrinking pattern as a	term in the pattern is	pattern equals 18).
following a specific rule		pattern that decreases	12 + 3 equals 15).	
(e.g., arrange three		(e.g., 12, 10, 8).		
objects with different		Identify the pattern rule		
sizes from the smallest		in growing and		
to largest).		shrinking patterns by		

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
		determining how each		
		step in a pattern differs		
		from the preceding		
		step.		

How is the Initial Precursor related to the Target? In order to understand and work with patterns, students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "these are two red cubes and two blue cubes," "you have two fidgets; one is big and one is small but they are both fidgets") and the student observes, feels, or otherwise interacts with them. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different.

How is the Distal Precursor related to the Target?

As students develop their awareness of attributes and putting like objects together, educators will draw the students' attention to patterns in words, symbols, numbers, images, routines, and the environment, allowing the student to observe, feel, or otherwise interact with the patterns.

Instructional Resources

M.EE.5.OA.3 Identify and extend numerical patterns.