

Mini-Map for M.EE.4.NF.1-2

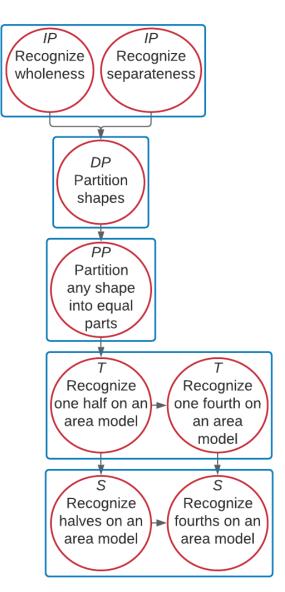
Subject: Mathematics Number and Operations—Fractions (NF) Grade: 4

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.4.NF.1-2 Identify models of one half (1/2) and one fourth	M.4.NF.1 Explain why a fraction <i>a/b</i> is equivalent to a fraction
(1/4).	$(n \times a)/(n \times b)$ by using visual fraction models, with attention to
	how the number and size of the parts differ even though the
	two fractions themselves are the same size. Use this principle to
	recognize and generate equivalent fractions.
	M.4.NF.2 Compare two fractions with different numerators and
	different denominators, e.g., by creating common
	denominators or numerators, or by comparing to a benchmark
	fraction such as 1/2. Recognize that comparisons are valid only
	when the two fractions refer to the same whole. Record the
	results of comparisons with symbols >, =, or <, and justify the
	conclusions, e.g., by using a visual fraction model.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Divide familiar shapes,	Divide familiar shapes,	Identify the model that	Identify the area model
understanding of	such as circles,	such as circles, squares,	represents one half or	that is divided into
"separateness" by	triangles, squares,	and/or rectangles, into	one fourth of a familiar	halves or fourths.
recognizing objects that	and/or rectangles, into	two or more equal	shape or object.	
are not joined together.	two or more distinct	parts.		
Communicate	parts. These parts may			
understanding of	or may not be equal.			
"wholeness" by				
recognizing an object				
that has all the parts				
joined together.				

How is the Initial Precursor related to the Target? When working toward an understanding of fractions, students need exposure to a wide variety of items that can be taken apart and put back together (e.g., linking cubes, magnetic tiles, puzzles, cake, clay, apple). Encourage students to interact with the objects. Educators should take care to use the words "whole" and "part" to describe them. While students do not need to say these words, they do need to learn the meanings. How is the Distal Precursor related to the Target? As students begin to understand whole and part, educators will introduce partitioning shapes (which do not need to be equal parts). Educators will introduce the idea that shapes can be cut into parts, and when they are put back together, they form the whole shape. As students gain experience with cutting shapes into parts, the educator will introduce the concept of equal parts. In all partitioning activities, the student will work on counting the parts.


NOTE: Students do not need to physically cut the shape to work on this concept. Cutting can be accomplished via computer technology, assistive technology, directing another where to cut, etc.

Instructional Resources

Released Testlets
See the <u>Guide to Practice Activities and Released Testlets</u> .
Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

M.EE.4.NF.1-2 Identify models of one half (1/2) and one fourth (1/4).

Мар Кеу		
IP	Initial Precursor	
DP	Distal Precursor	
PP Proximal Precursor		
T Target		
S Successor		
UN Untested		
Boxes indicate tested nodes		

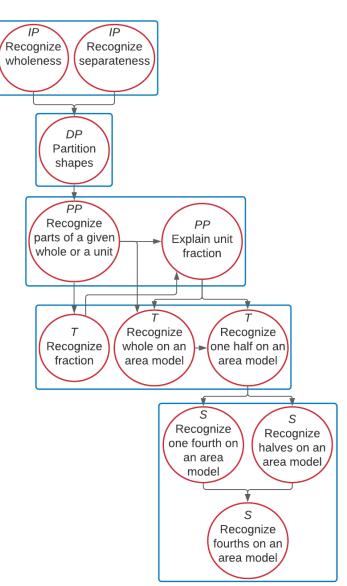
Mini-Map for M.EE.4.NF.3

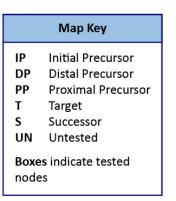
Subject: Mathematics Number and Operations—Fractions (NF) Grade: 4

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.4.NF.3 Differentiate between whole and half.	M.4.NF.3 Understand a fraction <i>a/b</i> with <i>a</i> > 1 as a sum of
	fractions 1/b.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Divide familiar shapes,	Recognize an object as	Recognize a fraction as	Recognize the area
understanding of	such as circles,	the part of a whole or	a number expressed as	model that represents
"separateness" by	triangles, squares,	unit when shown a	a quotient of two	one fourth. Recognize
recognizing objects that	and/or rectangles, into	whole or unit	integers in the form	the area model that is
are not joined together.	two or more distinct	containing a group of	<i>a/b,</i> with <i>b</i> not equal to	divided into halves or
Communicate	parts. These parts may	objects. Demonstrate	zero. Recognize the	fourths.
understanding of	or may not be equal.	understanding of a unit	area model that	
"wholeness" by		fraction (e.g., 1/4) as	represents a whole and	
recognizing an object		the quantity formed by	the area model that	
that has all the parts		one part when a whole	represents one half.	
joined together.		is partitioned into n		
		(e.g., 4) equal parts.		


How is the Initial Precursor related to the Target? When working toward an understanding of fractions, students need exposure to a wide variety of items that can be taken apart and put back together (e.g., linking cubes, magnetic tiles, puzzles, cake, clay, apple). Encourage students to interact with the objects. Educators should take care to use the words "whole" and "part" to describe them. While students do not need to say these words, they do need to learn the meanings. How is the Distal Precursor related to the Target? As students begin to understand whole and part, educators will introduce partitioning shapes (which do not need to be equal parts). Educators will introduce the idea that shapes can be cut into parts, and when they are put back together, they form the whole shape. As students gain experience with cutting shapes into parts, the educator will introduce the concept of equal parts. In all partitioning activities, the student will work on counting the parts.


NOTE: Students do not need to physically cut the shape to work on this concept. Cutting can be accomplished via computer technology, assistive technology, directing another where to cut, etc.

Instructional Resources

Released Testlets		
See the <u>Guide to Practice Activities and Released Testlets</u> .		
Using Untested (UN) Nodes		

M.EE.4.NF.3 Differentiate between whole and half.

Mini-Map for M.EE.4.NBT.2

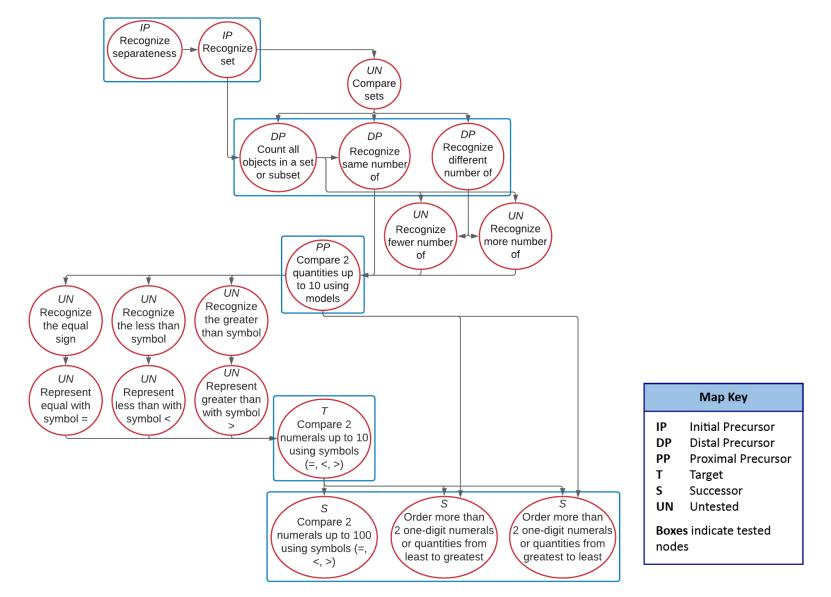
Subject: Mathematics Numbers and Operations in Base Ten (NBT) Grade: 4

Learning Outcome

DLM Essential Element	Grade-Level Standard	
M.EE.4.NBT.2 Compare whole numbers to 10 using symbols (<,	M.4.NBT.2 Read and write multi-digit whole numbers using	
>, =).	base-ten numerals, number names, and expanded form.	
	Compare two multi-digit numbers based on meanings of the	
	digits in each place, using >, =, and < symbols to record the	
	results of comparisons.	

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Count all objects in a	Use models such as	Compare two numbers	Compare two numbers
understanding of	set to communicate the	concrete manipulatives,	up to 10 using the	up to 100 using the
"separateness" by	total number of objects	diagrams, pictures, or	symbols >, <, and = to	symbols >, <, and = to
recognizing objects that	in a set. Identify sets	technology to compare	show that one number	show that one number
are not joined together.	having the same	two sets of objects up	is greater than, less	is greater than, less
Communicate	number of objects.	to 10, and communicate	than, or equal to the	than, or equal to the
understanding of set by	Identify a set containing	that the number of	other number.	other number. Order
recognizing a group of	a different number of	objects in one set is		three or more one-digit
objects sharing an	objects than the other	greater than, less than,		numerals from greatest
attribute.	two sets.	or equal to the number		to least or least to
		of objects in the other		greatest.
		set.		

How is the Initial Precursor related to the Target? In order to understand how numbers relate to one another (e.g., <, >, =) students need many opportunities to experience quantities and numerals in context across the school day. Educators provide lessons using a variety of sets. Teach students to recognize when items are grouped together into a set or separated out. As you present a set, label it (e.g., two balls, one bear, three blocks), count the items, label it again, and encourage students to use numerals to label and count the separate sets.


How is the Distal Precursor related to the Target?

As students gain experience with creating simple sets, counting in context, and developing one-to-one correspondence, educators will introduce comparisons through terms such as same/different, more/less. Continue to count anything and everything across the school day and help students compare amounts.

Instructional Resources

Released Testlets
See the Guide to Practice Activities and Released Testlet
Using Untested (UN) Nodes
See the document Using Mini-Maps to Plan Instruction.

M.EE.4.NBT.2 Compare whole numbers to 10 using symbols (<, >, =).

Mini-Map for M.EE.4.NBT.3

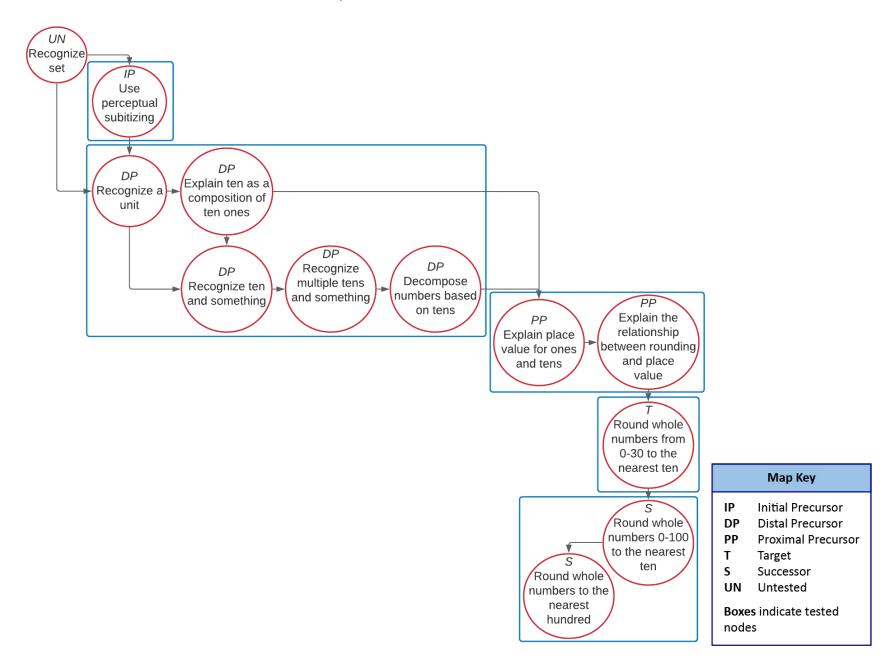
Subject: Mathematics Numbers and Operations in Base Ten (NBT) Grade: 4

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.4.NBT.3 Round any whole number 0-30 to the nearest	M.4.NBT.3 Use place value understanding to round multi-digit
ten.	whole numbers to any place.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize set as a	Recognize a unit as a	Communicate	Round numbers 0-30 to	Round numbers 0-99 to
group of objects sharing	group of countable	understanding that the	the nearest ten by using	the nearest ten by using
one or more attributes.	objects. Recognize ten	digit in the tens place is	a rounding strategy	a rounding strategy
Without counting each	as a group of 10	formed by grouping	(e.g., number line, place	(e.g., number line, place
object, recognize the	individual objects or 1	objects by tens and the	value).	value). Round numbers
number of objects in a	ten. Recognize a group	digit in the ones place is		100 and beyond to the
set.	of 10-19 objects as 1	composed of individual		nearest hundred by
	ten and a group of	objects. Round		using a rounding
	remaining ones and a	numbers to the nearest		strategy (e.g., number
	group of 20 or more	ten using place-value		line, place value).
	objects as multiple sets	understanding: the digit		
	of 10 and a group of	in the tens place is		
	remaining ones.	rounded up if the digit		
	Decompose or	in the ones place equals		
	represent a given	5 (e.g., 45 is rounded to		
	number in terms of tens	50) or more and is		
	and ones (e.g., 43 = 4	rounded down		
	tens and 3 ones).	otherwise (e.g., 32 is		
		rounded down to 30).		

How is the Initial Precursor related to the Target? To round numbers, students first need to know number names, the count sequence, one-to-one correspondence, and have cardinality. These procedures and concepts develop through many experiences in early counting. Perceptual subitizing happens when the student is able to name the amount (1-3 items) without actually counting them. For example when an educator asks the student to get their shoes and asks, "How many shoes do you have?" The student would reply, "two" without using the count sequence of one, two. This only happens when students have been given many experiences counting small numbers with many different contexts and materials.


NOTE: Students who are blind will learn to use tactile enumeration for 1-3 items.

How is the Distal Precursor related to the Target?

As students continue to gain experience in early counting (1-10 items), educators will introduce the concept that 10 can be grouped into one unit. Educators will use models that help students perceive a group of 10 and some more (e.g., bundles, ten frames, number line, arrays). Teen numbers are an important part of understanding this concept.

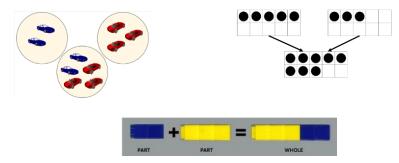
Instructional Resources

	Released Testlets	
See the <u>Guide to Practice Activities and Released Testlets</u> .		
Using Untested (UN) Nodes		
	Using Untested (UN) Nodes	

M.EE.4.NBT.3 Round any whole number 0-30 to the nearest ten.

Mini-Map for M.EE.4.NBT.4

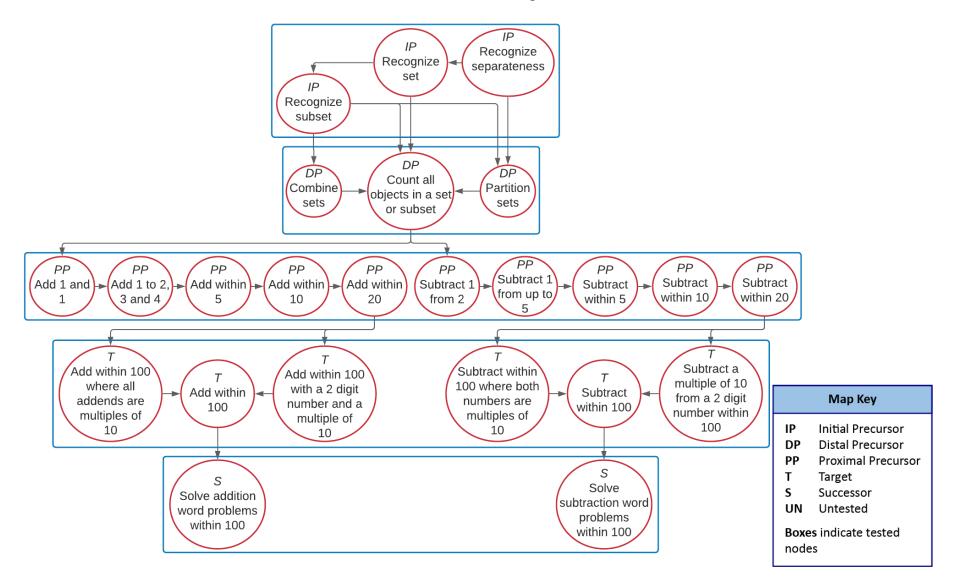
Subject: Mathematics Numbers and Operations in Base Ten (NBT) Grade: 4


Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.4.NBT.4 Add and subtract two-digit whole numbers.	M.4.NBT.4 Fluently add and subtract multi-digit whole numbers
	using the standard algorithm.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Combine two or more	Add two numbers with	Demonstrate addition	Use addition and
understanding of	sets of objects to create	a sum within 20 using	by adding two numbers	subtraction within 100
"separateness" by	a new set. Divide a set	objects, drawings,	up to 100. Demonstrate	to solve word problems,
recognizing objects that	of 10 or fewer objects	counters, or a	subtraction by	including join, separate,
are not joined together.	into two or more	mathematical equation,	subtracting numbers up	part-part-whole, and
Communicate	distinct subsets. Count	and communicate the	to 100. Use place-value	compare problems.
understanding of set by	all objects in a set to	sum by combining both	reasoning including	
recognizing a group of	communicate the total	the numbers. Subtract a	multiples of 10 and 100	
objects sharing an	number of objects in a	smaller number from a	to add or subtract	
attribute. Communicate	set.	larger number (no	numbers.	
understanding of a		larger than 20) by		
subset by recognizing a		taking counters/objects		
subset as a set or group		away from the larger		
of objects within a		set or using drawings or		
larger set that share an		a mathematical		
attribute.		equation, and		
		communicate the left-		
		over number as the		
		difference.		

How is the Initial Precursor related to the Target? In order to add and subtract two-digit whole numbers, students must first learn to organize items into groups/sets based on a common characteristic such as size, color, shape, texture, or flavor. Students learn how to sort items by separating a group of items into two groups (e.g., vehicles and animals). As students gain comfort sorting items into sets, they are encouraged to use their language to convey their thought process by identifying and naming the characteristic that determines the set (e.g., wheels and legs). Activities that require students to engage actively with the items will foster the students' understanding of set, subsets, and separateness (e.g., the game "one of these things is not like the other"; highlighting one characteristics in a group of similar items [e.g., color] by which the items will be grouped; incorporating creating sets into everyday activities [e.g., during cleanup time, students place items into one of two bins based on a designated characteristic]).


How is the Distal Precursor related to the Target? As students gain an understanding of how to group items into sets, educators will begin to help students connect their knowledge of sets with their knowledge of counting. Educators will provide multiple experiences counting sets and combining sets using multiple models. The following are examples of models.

Instructional Resources

Released Testlets		
See the <u>Guide to Practice Activities and Released Testlets</u> .		
Using Untested (UN) Nodes		
See the document <u>Using Mini-Maps to Plan Instruction</u> .		

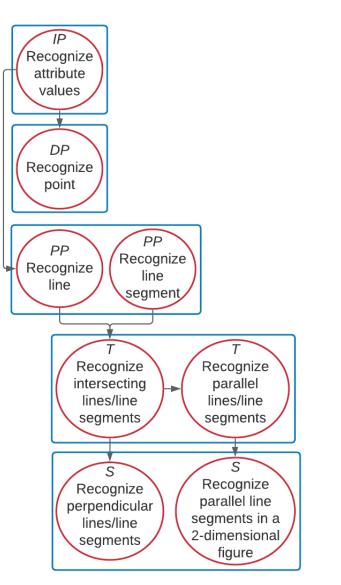
M.EE.4.NBT.4 Add and subtract two-digit whole numbers.

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.4.G.1 Recognize parallel lines and intersecting lines.	M.4.G.1 Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize attributes or	Recognize a point as a	Recognize a line as a	Recognize intersecting	Recognize
characteristics of an	precise location on a	straight line that	lines or line segments	perpendicular lines or
object, such as color,	plane or in space,	extends infinitely in two	as those that have at	line segments as those
orientation, length,	usually represented by	directions, and	least one point in	that intersect each
width, and weight.	a dot.	recognize a line	common, and recognize	other at a 90-degree
		segment as a part of a	parallel lines or line	angle. Recognize
		line with two end	segments as those that	parallel line segments in
		points.	are equal distance	a two-dimensional
			apart.	figure such as a square
				or rectangle (e.g.,
				opposite sides of a
				square or rectangle are
				parallel).

How is the Initial Precursor related to the Target? Being able to recognize parallel and intersecting lines requires a student to notice what is new. The educator draws the student's attention to new objects or stimuli, labels them, and the student observes, feels, or otherwise interacts with it. While the student interacts with the object, the educator can describe its various attributes, including lines, line segments, and points. Educators should use these words when defining and demonstrating their meanings. While students do not need to use the words, they do need to understand the meanings.


How is the Distal Precursor related to the Target?

As the students' attention to objects increases, the educator will provide multiple objects and tactuals, helping the student explore them and guiding the student using hand-under-hand to draw their attention to where line segments begin and end. While teaching intersecting lines/line segments and parallel lines/line segments, the educator can ask the student at the Distal Precursor level to identify where the line starts or begins.

Instructional Resources

M.EE.4.G.1 Recognize parallel lines and intersecting lines.

Мар Кеу		
IP	Initial Precursor	
DP	Distal Precursor	
PP	Proximal Precursor	
Т	Target	
S	Successor	
UN	Untested	
Boxes indicate tested nodes		

Mini-Map for M.EE.4.MD.5

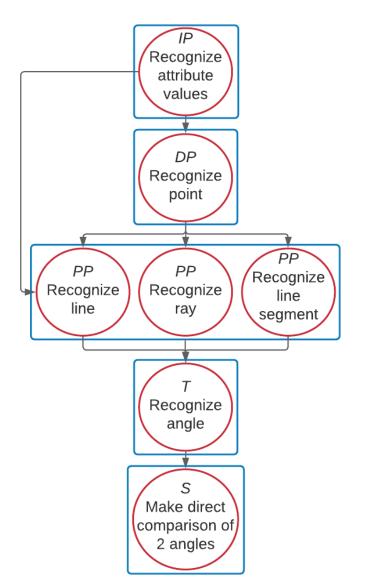
Subject: Mathematics Measurement and Data (MD) Grade: 4

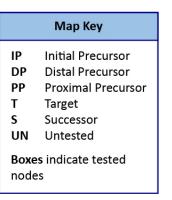
Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.4.MD.5 Recognize angles in geometric shapes.	M.4.MD.5 Recognize angles as geometric shapes that are
	formed wherever two rays share a common endpoint, and
	understand concepts of angle measurement.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize attributes or	Recognize a point as a	Recognize a line as a	Recognize an angle as a	Compare two angles
characteristics of an	precise location on a	straight line that	figure formed by two	without using any
object, such as color,	plane or in space,	extends infinitely in two	rays sharing one	measuring tools, and
orientation, length,	usually represented by	directions. Recognize a	endpoint.	communicate whether
width, and weight.	a dot.	line segment as a part		the angle is greater
		of a line with two end		than, less than, or equal
		points. Recognize a ray		to the other angle.
		as a part of a line that		
		begins at one point and		
		extends infinitely in one		
		direction.		

How is the Initial Precursor related to the Target? In order to recognize angles, students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "this is a circle, and it does not have any sides," or "this is a rectangle, and it has four sides"), and the students observe, feel, or otherwise interact with the shapes. This exploration of shapes supports students in understanding that everything has a shape, and shapes can be categorized and named. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different. These students also need to explore shapes that are different in size, color, or texture (e.g., long, skinny rectangles; short, fat rectangles; right triangles; isosceles trangles).


How is the Distal Precursor related to the Target?


At this level, educators provide students with opportunities to use shape labels (e.g., circle, square, triangle) to describe (i.e., speech, signs, or symbols) what they see and/or feel. This stage is not about getting the right answer but clarifying understanding. For instance, if the student has a circle and labels it a square, the teacher might respond by saying, "A square is a shape, and squares have straight sides. Look (or feel) that this shape has no straight sides, so it is a circle." Students also need experience with nonexamples (e.g., a circle with a gap in the circumference, a shape that looks similar to a triangle but has curved points, or a rectangle that has curved corners).

Instructional Resources

Released TestletsSee the Guide to Practice Activities and Released Testlets.Using Untested (UN) NodesSee the document Using Mini-Maps to Plan Instruction.

M.EE.4.MD.5 Recognize angles in geometric shapes.

Mini-Map for M.EE.4.MD.6

Subject: Mathematics Measurement and Data (MD) Grade: 4

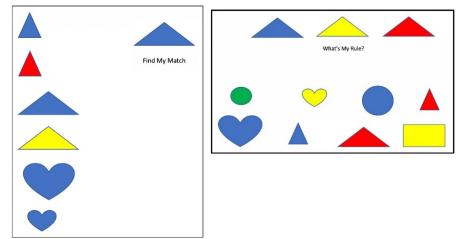
Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.4.MD.6 Identify angles as larger and smaller.	M.4.MD.6 Measure angles in whole-number degrees using a
	protractor. Sketch angles of specified measure.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize attributes or	Recognize whether two	Recognize whether a	Compare two angles	Compare three or more
characteristics of an	containers contain the	container is more full or	without using any	angles without using
object, such as color,	same or different	less full than another	measuring tools, and	any measuring tools,
orientation, length,	amounts.	container.	communicate whether	and arrange them from
width, and weight.			the angle is greater	least to greatest or
Recognize "same" as			than, less than, or equal	greatest to least.
the object that shares			to the other angle.	
all of the same				
attributes as other				
objects in a group.				
Recognize "different" as				
the object that shares				
some or none of the				
attributes as other				
objects in a group.				

© 2021 Accessible Teaching, Learning, and Assessment Systems (ATLAS)


How is the Initial Precursor related to the Target?

In order to identify angles as larger or smaller, students must first begin by learning to attend to people and objects when they are present. In the context of this Essential Element, educators should work on attending while interacting with shapes. As students' attention to people, objects, and shapes increases, the educator draws the students' attention to new objects or stimuli, labels them (e.g., "these are two red triangles; they are the same," or "you have two fidgets; this one is big and this one is small, but they are both fidgets."), and the students observe, feel, or otherwise interact with them. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different.

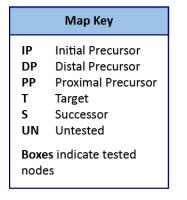
How is the Distal Precursor related to the Target?

Now that students have experience identifying shapes and objects as "same" and "different," provide instruction that focuses on creating sets that are grouped together in meaningful ways. Students do not have to label the shapes, but they do need to be able to match and identify items in a group based on the rule or attribute. For this Essential Element, create sets that include objects or images that differ in shape and size, so that students can match and work to find a rule that defines the pattern. These types of activities support students in understanding what attributes to pay attention to and what attributes to ignore based on the goal of the activity.

Note: Notice these activities are not just about sorting. The students are comparing an item or group of items to multiple items and learning to focus on attributes. This should be done first with real objects rather than pictures on a worksheet or folder activity. Activities that require matching are easier than activities that require finding a rule.


Instructional Resources

Released Testlets


See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

See the document <u>Using Mini-Maps to Plan Instruction</u>.

M.EE.4.MD.6 Identify angles as larger and smaller.

Mini-Map for M.EE.4.MD.3

Subject: Mathematics Measurement and Data (MD) Grade: 4

Learning Outcome

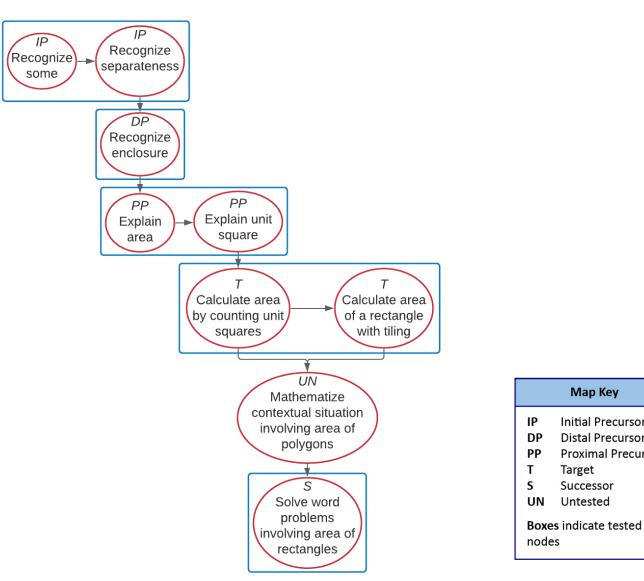
DLM Essential Element	Grade-Level Standard
M.EE.4.MD.3 Determine the area of a square or rectangle by	M.4.MD.3 Apply the area and perimeter formulas for rectangles
counting units of measure (unit squares).	in real-world and mathematical problems.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Recognize enclosure as	Communicate	Calculate area of a	Solve real-world
understanding of	an enclosed space that	understanding that a	square or rectangle by	problems by
"separateness" by	lies within a boundary	unit square is a square	filling a figure with unit	determining the area of
recognizing objects that	that distinguishes it	with edge lengths of 1	squares or tiles and	a square or a rectangle.
are not joined together.	from the space that lies	unit and area of 1	counting the total	The area of a square or
Communicate generic	outside the boundary.	square unit.	number of unit squares	a rectangle can be
understanding of		Communicate	or tiles. Calculate area	calculated by counting
"some" as a certain		understanding of area	of a square or rectangle	the number of unit
amount or a number of		as the measure of space	by counting the number	squares or tiles.
people or things.		contained within the	of square units drawn	
		outline or boundary of a	to cover the area.	
		two-dimensional object		
		or figure.		

How is the Initial Precursor related to the Target? Understanding how to calculate area requires a student to be able to recognize groups of items as a set, not just as individual objects. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. As you present a set, label it (e.g., two balls, one bear, three blocks), count the items, label it again, and encourage students to use numerals to label and count the separate sets.

NOTE: Educators can work on the Initial Precursor level using the sets/arrays that students working at the Target level are calculating area.

How is the Distal Precursor related to the Target? As students begin to understand labeling and counting small


As students begin to understand labeling and counting small sets (1-4), they begin to use the number sequence, and students become more adept at tracking individual objects and can recognize groups as having more and less on the basis of overall area. Work on this skill using a variety of arrays, labeling and counting the array, moving items in and out of the array, then labeling and counting the array again.

NOTE: Educators can work on the Distal Precursor level using the sets/arrays that students working at the Target level are calculating area.

Instructional Resources

Released Testlets				
See the Guide to Practice Activities and Released Testlets.				
Using Untested (UN) Nodes				
See the document Using Mini-Maps to Plan Instruction.				

M.EE.4.MD.3 Determine the area of a square or rectangle by counting units of measure (unit squares).

Map Key

Target

Successor

Untested

Initial Precursor

Distal Precursor

Proximal Precursor

Mini-Map for M.EE.4.MD.2.a

Subject: Mathematics Measurement and Data (MD) Grade: 4

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.4.MD.2.a Tell time using a digital clock. Tell time to the nearest hour using an analog clock.	M.4.MD.2.a Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.

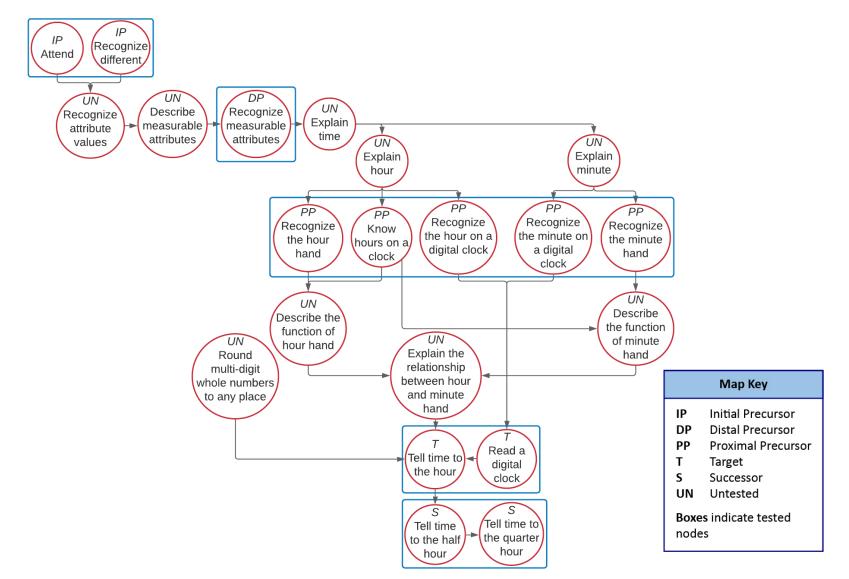
Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Show interest in and	Recognize attributes or	Identify the hour and	Tell time to the nearest	Tell time to the nearest
focused attention to a	characteristics of an	minute hands on an	hour (e.g., 3 o'clock, 6	half hour (e.g., 4:30,
task, object, or any	object that are	analog clock, with the	o'clock) using both an	7:30) or quarter hour
environment stimulus.	measurable (e.g.,	understanding that	analog and digital clock.	(e.g., 3:15, 6:45, 9:15)
Recognize that an	length, weight, time).	each number on the	Communicate the time	using both an analog
object can share some		clock represents a	shown on a digital	and digital clock.
or none of the		specific hour (e.g.,	clock.	
attributes as other		when the hour hand is		
objects in a group, and		at 6, it represents 6		
recognize the object		o'clock). Recognize		
that does not share any		hours and minutes on a		
attribute with other		digital clock, such that		
objects in a group as		the numeral on the left		
"different."		side of the colon		
		represents hours and		
		the numeral on the		

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
		right side of the colon		
		represents minutes.		

How is the Initial Precursor related to the Target? In order to understand the passage of time, and ultimately to tell time and understand its relevance, students begin by learning to focus their attention and recognize when things in their environment change or are different. In the context of learning to tell time, educators can help students attend to what is happening and contrast it with what will happen next or what happened in the past. They can draw student's attention to changes and help them notice new and different things in the environment, especially when those new and different things are associated with the passage of time.

How is the Distal Precursor related to the Target? In the context of an Essential Element addressing the ability to tell time, recognizing measurable attributes refers to attributes that begin to mark time. For example, students recognize attributes such as the beginning and ending of an activity, things that are accomplished first then next, and specific time concepts such as day, night, today, tomorrow, and yesterday.

Instructional Resources


Released Testlets

See the Guide to Practice Activities and Released Testlets.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

M.EE.4.MD.2.a Tell time using a digital clock. Tell time to the nearest hour using an analog clock.

Mini-Map for M.EE.4.MD.2.b

Subject: Mathematics Measurement and Data (MD) Grade: 4

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.4.MD.2.b Measure mass or volume using standard tools.	M.4.MD.2.b Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.

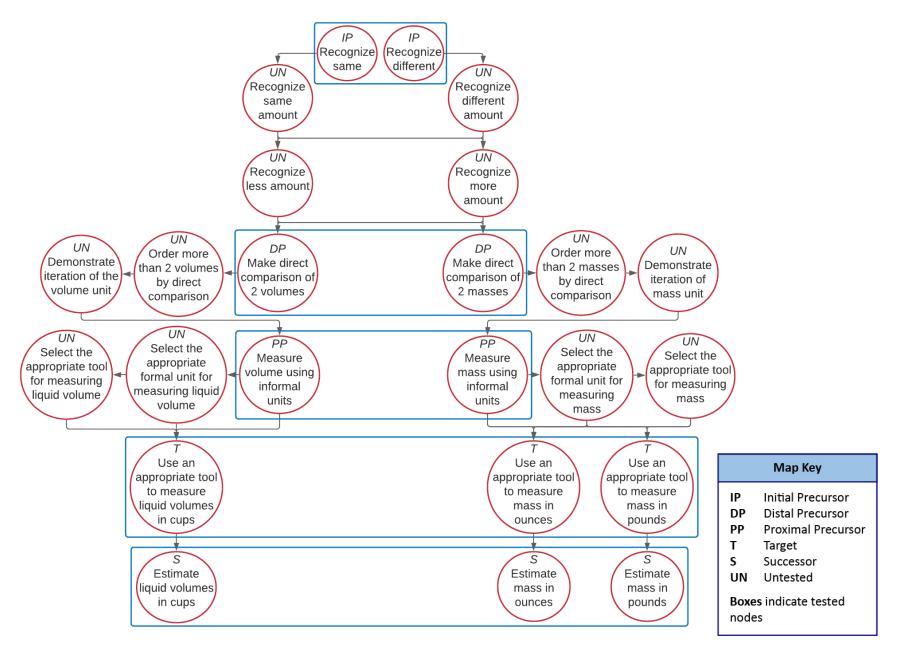
Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize "same" as	Compare the mass of	Measure the mass of an	Use a scale or pan	Estimate the mass of an
the object that shares	two different objects	object using informal	balance to measure the	object in ounces and in
all of the same	without using a	units such as counters	mass of an object in	pounds. Estimate the
attributes as other	measuring tool and	or pennies (e.g., placing	ounces and in pounds.	volume of an object by
objects in a group.	communicate whether	counters on one side of	Use appropriate	visually guessing how
Recognize "different" as	the mass of one object	a balance, opposite an	measuring cups to	many cups of water
the object that shares	is heavier than, lighter	object, until the balance	measure the volume of	would be required to fill
some or none of the	than, or equal to the	is even and	a liquid in cups.	a container.
attributes as other	other object. Compare	communicating the		
objects in a group.	the volume of two	mass of the object by		
	different objects	counting the total		
	without using a	number of counters).		
	measuring tool, and	Measure the volume of		
	communicate whether	a container using		
	one container would	informal units such as		
		beans or buttons (e.g.,		

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	hold more or less fluid	completely filling a		
	than the other.	container with beans or		
		buttons and		
		communicating the		
		volume by counting the		
		total number of units		
		used to fill the		
		container).		

How is the Initial Precursor related to the Target? In order to build toward measuring mass and volume, students will engage in activities that compare at least two items. Educators will call attention to both how they are the same and how they are different. This type of instruction should include but may not be limited to how light or heavy objects are across the school day, so students have many opportunities to experience same and different.

How is the Distal Precursor related to the Target?

As students are learning to make comparisons, educators can utilize direct comparisons of familiar items based on mass (heaviness) or volume (how much something holds). For example, provide students with two items of similar size but with different masses (feeling of heaviness). Have them compare which feels heavier and which feels lighter. Students will need to be introduced to the language that describes mass and volume (e.g., heavy/light, more/less, same/different, how much it will hold).


Instructional Resources

Released Testlets

See the <u>Guide to Practice Activities and Released Testlets</u>.

Using Untested (UN) Nodes

See the document Using Mini-Maps to Plan Instruction.

M.EE.4.MD.2.b Measure mass or volume using standard tools.

Mini-Map for M.EE.4.MD.2.d

Subject: Mathematics Measurement and Data (MD) Grade: 4

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.4.MD.2.d Identify coins (penny, nickel, dime, quarter) and	M.4.MD.2.d Use the four operations to solve word problems
their values.	involving distances, intervals of time, liquid volumes, masses of
	objects, and money, including problems involving simple
	fractions or decimals, and problems that require expressing
	measurements given in a larger unit in terms of a smaller unit.
	Represent measurement quantities using diagrams such as
	number line diagrams that feature a measurement scale.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Show interest in and	Recognize any	Recognize coins and	Identify pennies, dimes,	Communicate that a
focused attention to a	measurable (e.g.,	bills as money, and	nickels, and quarters	number of coins of a
task, object, or any	length, width, mass) or	recognize that money	when shown different	lesser value can be
environment stimulus.	non-measurable (e.g.,	has value when	coins. Communicate	worth the same as one
	color) attribute values.	compared to a piece of	that a penny is worth 1	coin of a greater value
		paper.	cent, a nickel is worth 5	(e.g., five pennies have
			cents, a dime is worth	the same value as a
			10 cents, and a quarter	nickel, 10 pennies have
			is worth 25 cents.	the same value as a
				dime, two nickels have
				the same value as one
				dime, 25 pennies have
				the same value as one
				quarter, and five nickels
				have the same value as
				one quarter).

How is the Initial Precursor related to the Target? In order to recognize the distinctions among coins and their values, students must first attend to coins when they are present. In the context of this Essential Element, educators should work on attending while interacting with coins and using them to accomplish things (e.g., paying for lunch, collecting donations).

How is the Distal Precursor related to the Target?

As students increase their attention to coins, they can begin working to recognize the different attributes of coins (e.g., size, color). When presenting various coins, educators should take care to use the names of the coins while defining and demonstrating their meaning. While students do not need to say these words, they do need to learn the meanings.

Released Testlets		
See the Guide to Practice Activities and Released Testlets.		
Using Untested (UN) Nodes		
Using Untested (UN) Nodes		

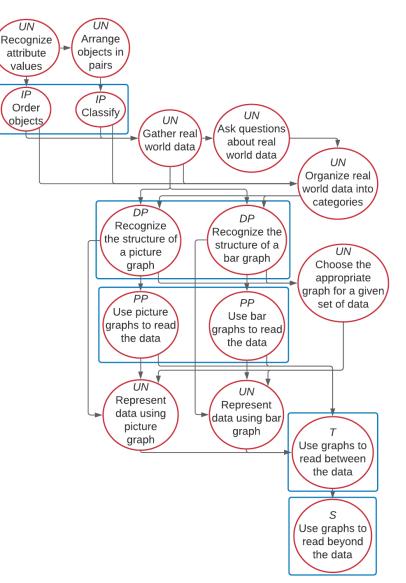
M.EE.4.MD.2.d Identify coins (penny, nickel, dime, quarter) and their values.

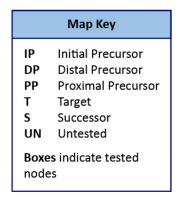
Mini-Map for M.EE.4.MD.4.b

Subject: Mathematics Measurement and Data (MD) Grade: 4

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.4.MD.4.b Interpret data from a picture or bar graph.	M.4.MD.4 Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots.


Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Arrange objects in a specific order (e.g., smallest to largest). Group objects by some attribute value (e.g., shape, size, texture, numerical pattern).	Recognize the structure of bar and picture graphs such as the framework, specifiers, or labels for the <i>x</i> - and <i>y</i> -axes. Understand that bars are used to display data on bar graphs, where the height of the bar represents the number of observations for each category. Understand that pictures, symbols, or geometrical figures are used to display data on picture graphs, where the number of pictures or symbols represents the number of observations for each category.	Answer elementary- level questions by lifting information from a bar graph or picture graph, and understand the information represented on the graph (e.g., on the graph representing students' favorite ice cream, how many students like strawberry ice cream? How many students like chocolate ice cream?).	Interpret or integrate information on a bar graph or picture graph to answer questions (e.g., in a graph representing students' favorite ice cream, how many more students like strawberry ice cream than chocolate ice cream?).	Draw inferences or make predictions by interpreting information presented on a bar graph or picture graph (e.g., on a graph representing the number of pizzas required for a certain number of people, predict the number of pizzas required for 20 people).


How is the Initial Precursor related to the Target? In order to be able to understand data on a graph, students begin learning to notice what is new. Educators draw the students' attention to the new objects or stimuli, label them (e.g., these are blocks, these are shapes, these are animals), and the student observes, feels, or otherwise interacts with it. Educators encourage students to begin placing like objects together.

How is the Distal Precursor related to the Target? As the students' attention to objects increases, educators will begin to draw the students' attention to what is the same and different between familiar items: color, shape, quantity (1-4), size, texture, and pattern. Educators should take care to use attribute words while defining and demonstrating their meaning. While students do not need to say these words, they do need to learn the meanings. Students will also begin to group two or more items in the same set based on an attribute (e.g., two tigers, bumpy balls and bumpy gravel, red spoons). As the students group two or more items, the educator will demonstrate the representation in a bar or picture graph and encourage students to actively participate in the creation of the graph.

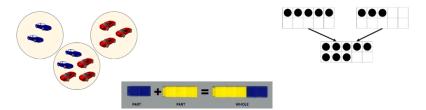
Released Testlets		
See the <u>Guide to Practice Activities and Released Testlets</u> .		
Using Untested (UN) Nodes		
See the document Using Mini-Maps to Plan Instruction.		

M.EE.4.MD.4.b Interpret data from a picture or bar graph.

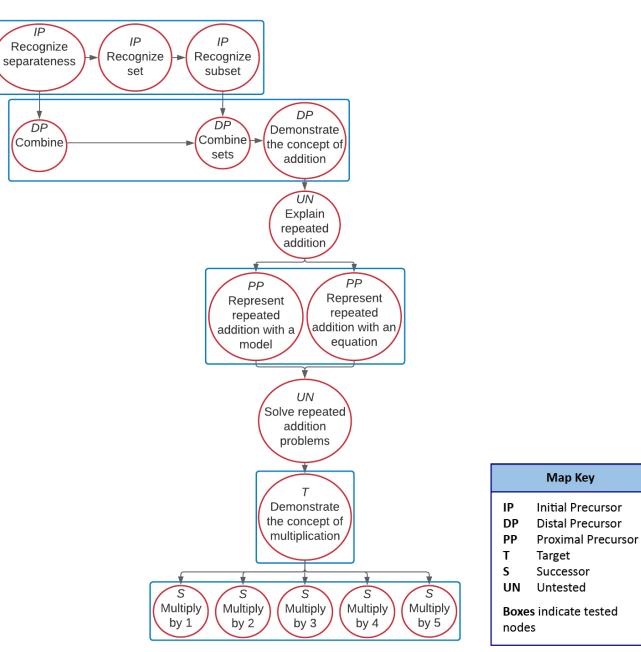
Mini-Map for M.EE.4.OA.1-2

Subject: Mathematics Operations and Algebraic Thinking (OA) Grade: 4

Learning Outcome


DLM Essential Element	Grade-Level Standard
M.EE.4.OA.1-2 Demonstrate the connection between repeated addition and multiplication.	 M.4.OA.1 Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations. M.4.OA.2 Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Combine two or more	Use models, such as	Demonstrate	Multiply numbers up to
understanding of	sets of objects to create	mathematical equations	understanding of	12 by factors 1 to 5,
"separateness" by	a new set. Combine two	(e.g., 5 + 5 + 5 = 15),	multiplication by	using manipulatives.
recognizing objects that	or more parts (e.g.,	sets of manipulatives,	combining multiple sets	
are not joined together.	toys, shapes) to form a	or number line	of the same quantity to	
Communicate	new whole.	diagrams to represent a	find the total number of	
understanding of set by	Demonstrate an	repeated addition	objects.	
recognizing a group of	understanding of	problem.		
objects sharing an	addition by combining			
attribute. Communicate	the objects of two or			
understanding of a	more sets.			
subset by recognizing a				


Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
subset as a set or group				
of objects within a				
larger set that share an				
attribute.				

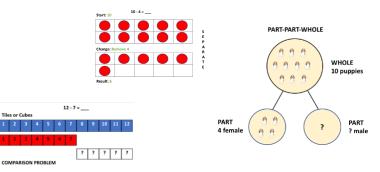
How is the Initial Precursor related to the Target? In order to understand multiplication, students must learn to organize items into groups/sets based on a common characteristic such as size, color, shape, texture, or flavor. Students learn how to sort items by separating a group of items into two groups (e.g., vehicles and animals). As students gain comfort sorting items into sets, they are encouraged to use their language to convey their thought process by identifying and naming the characteristic that determines the set (e.g., wheels and legs). Activities that require students to engage actively with the items will foster the students' understanding of set, subsets, and separateness (e.g., the game "one of these things is not like the other;" highlighting one characteristic [e.g., color] in a group of similar items by which the items will be grouped; incorporating creating sets into everyday activities [e.g., during cleanup time, students place items into one of two bins based on a designated characteristic]).

How is the Distal Precursor related to the Target? As students gain an understanding of how to group items into sets, educators will begin to help students connect their knowledge of sets with their knowledge of counting. Educators will provide multiple experiences counting sets and combining sets using multiple models (see below for examples). Educators also need to introduce the concept of equal sets using the students' background knowledge of same and different.

Released Testlets		
See the <u>Guide to Practice Activities and Released Testlets</u> .		
Using Untested (UN) Nodes		
Using Untested (UN) Nodes		

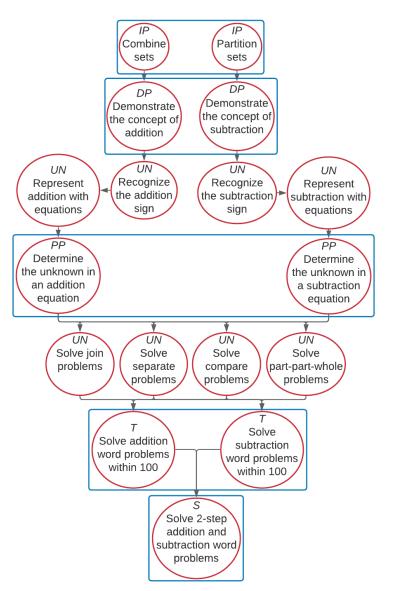
M.EE.4.OA.1-2 Demonstrate the connection between repeated addition and multiplication.

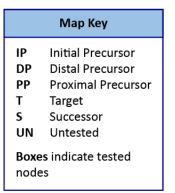
Mini-Map for M.EE.4.OA.3


Subject: Mathematics Operations and Algebraic Thinking (OA) Grade: 4

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.4.OA.3 Solve one-step real-world problems using addition or subtraction within 100.	M.4.OA.3 Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.


Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Combine two or more	Demonstrate	Find the unknown sum	Solve word problems	Solve two-step addition
sets of objects to form a	understanding of	(e.g., 5 + 8 = ?) or the	with numbers up to 100	or subtraction word
new set. Divide a set of	addition by combining	missing addend (e.g., 6	using addition (e.g.,	problems using an
10 or fewer objects into	the objects of two or	+? = 10) in an addition	Johnny has 25 suckers	addition or subtraction
two or more distinct	more sets, and	equation. Find the	and buys 15 more; how	strategy (e.g., Johnny
subsets (e.g., dividing a	demonstrate	unknown difference in a	many does he have	has 25 suckers and buys
set containing 10	understanding of	subtraction equation	now?) or subtraction	15 more, then he gives
objects into two subsets	subtraction by	(e.g., 12 - 7 = ?).	(e.g., Johnny has 90	10 to his brother; how
containing 4 and 6	removing some objects		suckers and gives 20	many does he have
objects).	from a larger set.		away; how many does	now?).
			he have left?).	


How is the Initial Precursor related to the Target? The knowledge needed to solve addition and subtraction real-world problems links back to an understanding of how to create sets, but it also requires learning to manipulate sets (i.e., combining and separating or partitioning). Provide students many opportunities to take a set of objects (e.g., tiles, linking cubes, buttons) and separate them based on a given characteristic (e.g., shape, color, size) into two distinct sets, then separate them again based on another characteristic. Guide students to notice how the set size changes each time the educator combines or partitions the sets. How is the Distal Precursor related to the Target? As students gain an understanding of how to group and manipulate items into sets, educators will begin to help students connect their knowledge of sets and counting to addition and subtraction. Educators will provide multiple experiences using the various addition and subtraction problem types (e.g., joining, separating, part-part-whole, and comparison problems).

M.EE.4.OA.3 Solve one-step real-world problems using addition or subtraction within 100.

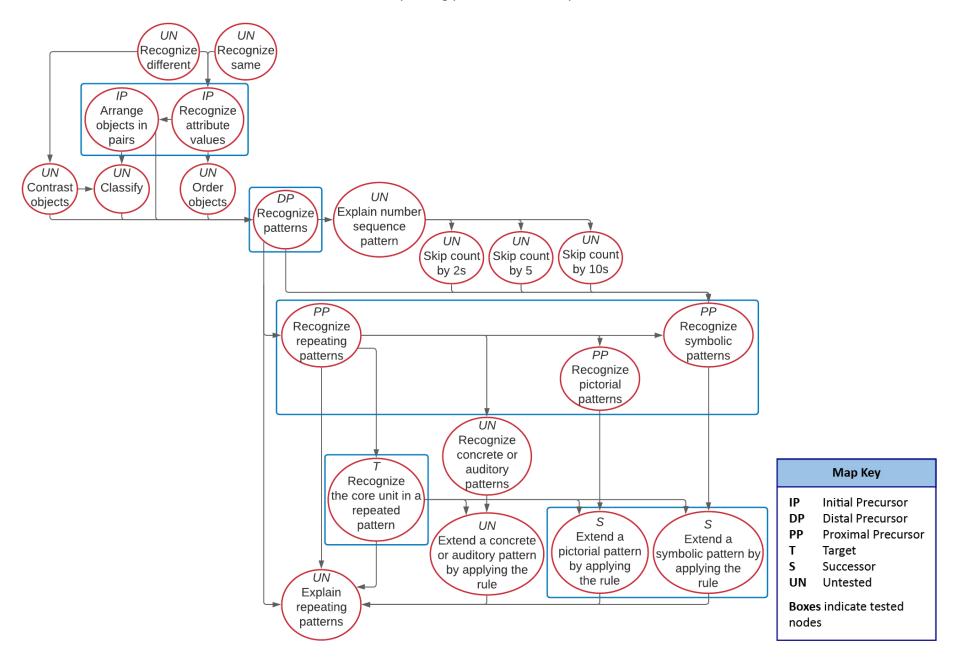
Mini-Map for M.EE.4.OA.5

Subject: Mathematics Operations and Algebraic Thinking (OA) Grade: 4

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.4.OA.5 Use repeating patterns to make predictions.	M.4.OA.5 Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule "Add 3" and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way.

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize attributes or	Recognize patterns (or	Recognize the pattern	Recognize the core unit	Communicate the next
characteristics of an	cycles) that exist in	that either repeats or	in a repeating pattern	element in a repeating
object such as color,	nature (e.g., seasons	grows when shown	by determining the	pattern by using the
height, or weight. Form	occur in a pattern, day	different patterns	smallest section of the	core unit. For example,
a pair by putting	and night occur in a	involving numbers,	pattern that is repeated	the next term in the
together two objects	pattern) or in everyday	letters, symbols,	over and over (e.g., the	pattern 2, 4, 4, 2, 4, 4,
(e.g., putting together a	life (e.g., music, P.E.,	pictures, or shapes	core unit in the pattern	2, 4, 4 is 2 because
pencil and an eraser	and art classes occur in	(e.g., 1, 1, 2, 1, 1, 2, 1,	1, 1, 2, 1, 1, 2, 1, 1, 2	the core unit is 2, 4, 4.
from two sets	a pattern in school).	1, 2, or 2, 4, 6, 8).	is 1, 1, 2).	The patterns should be
containing pencils and				limited to repeating
erasers).				patterns using numbers,
				letters, shapes,
				pictures, etc.


How is the Initial Precursor related to the Target? In order to understand and work with patterns, students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels and describes them (e.g., "there are two cubes," "this is a circle and then a square," "this group has a short block, a long block, and a short block and this group has a short block, a long block, and a short block"), and the student observes, feels, or otherwise interacts with them. Educators encourage students to begin placing objects together to make their own pattern.

How is the Distal Precursor related to the Target?

As students develop their awareness of attributes and putting objects together, educators will draw the students' attention to patterns in words, symbols, numbers, images, routines, and the environment, and allow students to create their own patterns.

Released Testlets			
See the Guide to Practice Activities and Released Testlets			
Using Untested (UN) Nodes			
See the document Using Mini-Maps to Plan Instruction.			

M.EE.4.OA.5 Use repeating patterns to make predictions.

