

2022–2023 Technical Manual Update

Pennsylvania Supplement

January 2024

DLM TECHNICAL MANUAL PENNSYLVANIA SUPPLEMENT FOREWORD INFORMATION

The Dynamic Learning Maps® (DLM®) Consortium is made up of 22 state departments of education that use and develop the DLM Alternate Assessment system. DLM assessments are computer-based and accessible to students with significant cognitive disabilities for whom general state assessments are not appropriate, even with accommodations. Decisions regarding the assessment and reporting are made at the consortium level. As a result, some counts in the technical manual must be rounded to protect the identity of students in smaller states.

DLM serves as the statewide alternate assessment for accountability in Pennsylvania. DLM provides a technical manual annually to include data representative of all students from the consortium states, as well as a state specific supplement. The following Pennsylvania supplement to the DLM technical manual is available to better examine state specific data.

The manual contains tables that are representative of all states in the consortium. Therefore, there may be some slight differences in the data represented in this report and Pennsylvania's final accountability reporting data and student score reporting. For example, Pennsylvania assesses students at grades 3-8 and 11 in English Language Arts and Mathematics, and grades 4, 8, and 11 in Science. If a student is assessed at a grade level outside of these testing grades, that assessment is invalidated in the state's final accountability and reporting process.

Questions on the data contained in this Pennsylvania Supplement can be directed to alternateassessment@pattankop.net.

All rights reserved. Any or all portions of this document may be reproduced and distributed without prior permission provided the source is cited as:

Dynamic Learning Maps Consortium. (2023, December). 2022–2023 Technical Manual—Pennsylvania Supplement. University of Kansas, Accessible Teaching, Learning, and Assessment Systems.

Acknowledgements

The publication of this technical manual update builds on the documentation presented in the 2021–2022 Technical Manual—Year-End Model. This document represents further contributions to a body of work in the service of supporting a meaningful assessment system designed to serve students with the most significant cognitive disabilities. Hundreds of people have contributed to this undertaking. We acknowledge them all for their contributions.

Many contributors made the writing of this technical manual possible. Dynamic Learning Maps[®] (DLM[®]) staff who made significant writing contributions to this technical manual are listed below with gratitude.

W. Jake Thompson, Ph.D., Assistant Director for Psychometrics Amy K. Clark, Ph.D., Associate Director for Operational Research

The authors also wish to acknowledge Ashley Hirt, Jeffrey Hoover, Elizabeth Kavitsky, Jennifer Kobrin, Brooke Nash, and Noelle Pablo for their role in developing, organizing, and compiling this manual. The authors also wish to acknowledge Amber Cavasos, Alson Cole, Karen Erickson, Sarah Koebley, Jessica Lancaster, and Delaney Wilson for their contributions to this manual. Finally, the authors wish to thank Lucas Cooper, Justin Dean, Aaron Gates, and Sara Lundberg for their editing and project management work. For a list of project staff who supported the development of this manual through key contributions to design, development, or implementation of the Dynamic Learning Maps Alternate Assessment System, please see the 2021–2022 Technical Manual—Year-End Model.

We are also grateful for the contributions of the members of the DLM Technical Advisory Committee who graciously provided their expertise and feedback on the DLM system. Members of the Technical Advisory Committee during the 2022–2023 operational year include:

Russell Almond, Ph.D., Florida State University
Claudia Flowers, Ph.D., University of North Carolina at Charlotte
Robert Henson, Ph.D., University of North Carolina at Greensboro
Joan Herman, Ed.D., University of California, Los Angeles
James Pellegrino, Ph.D., University of Illinois Chicago
Edward Roeber, Ph.D., Michigan Assessment Consortium
David Williamson, Ph.D., Independent Consultant
Phoebe Winter, Ph.D., Independent Consultant

Contents

1	Ove	erview
	1.1	Data Suppression
	1.2	State-Specific Supplement Overview
2	Con	ntent Structures
3	Ass	essment Design and Development
4	Ass	essment Delivery
	4.1	Overview of Key Features of the Year-End Assessment Model
		4.1.1 Assessment Administration Windows
	4.2	Evidence From the DLM System
		4.2.1 Administration Time
		4.2.2 Device Use
		4.2.3 Adaptive Delivery
		4.2.4 Administration Incidents
		4.2.5 Accessibility Support Selections
	4.3	Evidence From Test Administrators
		4.3.1 User Experience With the DLM System
	4.4	Conclusion
5	Mod	deling
6	Star	ndard Setting
7	Rep	orting and Results
	7.1	_
	7.2	Student Performance
		7.2.1 Overall Performance
		7.2.2 Subgroup Performance
	7.3	Mastery Results
		7.3.1 Linkage Level Mastery
	7.4	Data Files
		Score Reports
		7.5.1 Individual Student Score Reports
	7.6	Quality-Control Procedures for Data Files and Score Reports
	7.7	Conclusion
8	Rali	ability
9	Trai	ning and Professional Development
10	Vali	dity Argument
11	Rofe	arancas

List of Tables

4.1	Distribution of Response Times per Testlet in Minutes	(
4.2	Correspondence of Complexity Bands and Linkage Levels	8
4.3	Adaptation of Linkage Levels Between First and Second English Language Arts Testlets .	10
4.4	Adaptation of Linkage Levels Between First and Second Mathematics Testlets	1
4.5	Accessibility Supports Selected for Pennsylvania Students	13
4.6	Test Administrator Responses Regarding Test Administration	1
7.1	Student Participation by Grade	18
7.2	Demographic Characteristics of Participants	19
7.3	Number of Instructionally Embedded Testlets by Grade and Subject	19
7.4	Percentage of Students by Grade and Performance Level	2
7.5	English Language Arts Performance Level Distributions by Demographic Subgroup	22
76	Mathematics Performance Level Distributions by Demographic Subgroup	2:

List of Figures

4.1	Distribution of Devices Used for Completed Testlets	7
7.1	Students' Highest Linkage Level Mastered Across English Language Arts and	
	Mathematics Essential Elements by Grade	25

1. Overview

During the 2022–2023 academic year, the Dynamic Learning Maps[®] (DLM[®]) Alternate Assessment System offered assessments of student achievement in mathematics, English language arts (ELA), and science for students with the most significant cognitive disabilities in grades 3 through 8 and high school.

A complete technical manual was created in 2021–2022 for ELA and mathematics (Dynamic Learning Maps Consortium [DLM Consortium], 2022). This volume provides state-specific information for two of those chapters. For a complete description of the DLM system for ELA and mathematics, refer to the 2021–2022 Technical Manual—Year-End Model (DLM Consortium, 2022).

1.1. Data Suppression

In order to ensure that individual students cannot be identified, disaggregated counts have been randomly rounded to the nearest 10, the suppression threshold specified by Pennsylvania. Random rounding means that a single value could round up or down, with the probability equal to the distance to each rounded value (Matthews & Harel, 2011). For example, a value of 17 would have a 30% chance of rounding down to 10 and a 70% chance of rounding up to 20 (i.e., values are more likely to round to their nearest end point). This method ensures that all the data is properly deidentified, while providing the maximum amount of information. That is, when using simple data suppression, groups that are above the suppression threshold must often be complementarily suppressed in order to ensure that groups below the suppression threshold are properly deidentified. Random rounding allows for results to be reported for all groups, while preserving student confidentiality.

1.2. State-Specific Supplement Overview

Chapter 1 provides an overview of the contents of the Pennsylvania state-specific supplement.

Chapter 2 and Chapter 3 do not include data specific to a single state and are not included in the state-specific supplement.

Chapter 4 provides an update on assessment delivery for Pennsylvania during the 2022–2023 year. The chapter provides a summary of administration time, device usage, adaptive delivery, administration incidents, accessibility support selections, and test administrator survey results regarding user experience.

Chapter 5 and Chapter 6 do not include data specific to a single state and are not included in the state-specific supplement.

Chapter 7 reports the 2022–2023 operational results for Pennsylvania, including student participation data. The chapter details the percentage of students at each performance level; subgroup performance by gender, race, ethnicity, and English learner status; and the percentage of students who showed mastery at each linkage level.

Chapter 8, Chapter 9, and Chapter 10 do not include data specific to a single state and are not included in the state-specific supplement. For a complete summary, see the *2022–2023 Technical Manual Update—Year-End Model* (DLM Consortium, 2023a).

2. Content Structures

Learning maps are a unique key feature of the Dynamic Learning Maps[®] (DLM[®]) Alternate Assessment System and drive the development of all other components. For a description of the process used to develop the map models, including the detailed work necessary to establish and refine the DLM maps in light of the Common Core State Standards and the needs of the student population, see Chapter 2 of the 2021–2022 Technical Manual—Year-End Model (DLM Consortium, 2022).

3. Assessment Design and Development

For a description of updates to the Dynamic Learning Maps[®] (DLM[®]) Alternate Assessment System's item and test development for the 2022–2023 academic year, including a summary of external reviews of items and testlets for content, bias, and accessibility; a description of the operational assessments; and a description of field tests, see Chapter 3 of the 2022–2023 Technical Manual Update—Year-End Model (DLM Consortium, 2023a).

For a complete description of item and test development, including information on the use of evidence-centered design and Universal Design for Learning in the creation of concept maps to guide test development; external review of content; and information on the pool of items available for field tests and the 2021–2022 administration, see the 2021–2022 Technical Manual—Year-End Model (DLM Consortium, 2022).

4. Assessment Delivery

Chapter 4 of the Dynamic Learning Maps[®] (DLM[®]) Alternate Assessment System *2021–2022 Technical Manual—Year-End Model* (DLM Consortium, 2022) describes general test administration and monitoring procedures. This chapter describes updated procedures and data collected in 2022–2023, including a summary of administration time, device use, adaptive delivery, administration incidents, accessibility support selections, and test administrator survey responses regarding user experience.

Overall, intended administration features remained consistent with the 2021–2022 implementation, including the availability of instructionally embedded testlets, spring operational administration of testlets, the use of adaptive delivery during the spring window, and the availability of accessibility supports.

For a complete description of test administration for DLM assessments–including information on the Kite[®] Suite used to assign and deliver assessments, testlet formats, accessibility features, the First Contact Survey used to recommend testlet linkage level, available administration resources and materials, and information on monitoring assessment administration–see the *2021–2022 Technical Manual—Year-End Model* (DLM Consortium, 2022).

4.1. Overview of Key Features of the Year-End Assessment Model

This section describes DLM test administration for 2022–2023. For a complete description of key administration features, including information on assessment delivery, the Kite[®] Suite, and linkage level assignment, see Chapter 4 of the *2021–2022 Technical Manual—Year-End Model* (DLM Consortium, 2022). Additional information about changes in administration can also be found in the *Test Administration Manual* (DLM Consortium, 2023d) and the *Educator Portal User Guide* (DLM Consortium, 2023c).

4.1.1. Assessment Administration Windows

Assessments are administered in the spring assessment window for operational reporting. Optional assessments are available during the instructionally embedded assessment window for educators to administer for formative information.

4.1.1.1. Instructionally Embedded Assessment Window

During the instructionally embedded assessment window, testlets are optionally available for test administrators to assign to their students. When choosing to administer the optional testlets during the instructionally embedded assessment window, educators decide which EEs and linkage levels to assess for each student using the Instruction and Assessment Planner in Educator Portal. The assessment delivery system recommends a linkage level for each EE based on the educator's responses to the student's First Contact Survey, but educators can choose a different linkage level based on their own professional judgment. In 2022–2023, the instructionally embedded assessment window occurred between September 12, 2022, and February 22, 2023. States were given the option of using the entire window or setting their own dates within the larger window. In Pennsylvania, the instructionally embedded assessment window occurred between September 12, 2022, and February 22, 2023.

4.1.1.2. Spring Assessment Window

During the spring assessment window, students are assessed on all of the EEs on the assessment blueprint in ELA and mathematics. The linkage level for each EE is determined by the system. In 2022–2023, the spring assessment window occurred between March 13, 2023, and June 9, 2023. States were given the option of using the entire window or setting their own dates within the larger window. In Pennsylvania, the spring assessment window occurred between March 13, 2023, and May 5, 2023.

4.2. Evidence From the DLM System

This section describes evidence collected by the DLM system during the 2022–2023 operational administration of the DLM alternate assessment. The categories of evidence include administration time, device use, adaptive delivery, administration incidents, and accessibility support selections.

4.2.1. Administration Time

Estimated testlet administration time varies by student and subject. Testlets can be administered separately across multiple testing sessions as long as they are all completed within the testing window.

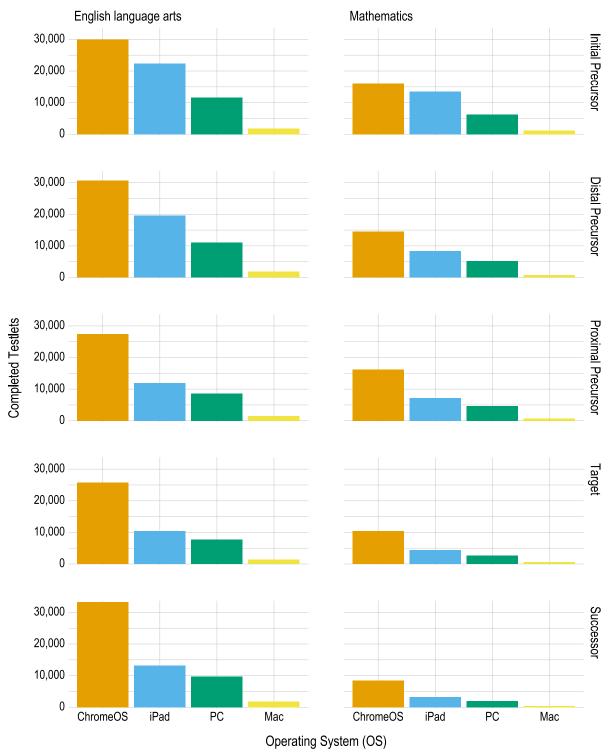
The published estimated total testing time per testlet is around 5–10 minutes in mathematics, 10–15 minutes in reading, and 10–20 minutes for writing (DLM Consortium, 2023d). The estimated total testing time is 60–75 minutes per student in ELA and 35–50 minutes in mathematics in the spring assessment window. Published estimates are slightly longer than anticipated real testing times where students are interacting with the assessment because of the assumption that test administrators need time for setup. The actual amount of testing time per testlet for a student varies depending on each student's unique characteristics.

Kite Student Portal captured start dates, end dates, and time stamps for every testlet. The differences between these start and end times were calculated for each completed testlet. Table 4.1 summarizes the distribution of test times per testlet for students in Pennsylvania. The distribution of test times in Table 4.1 is consistent with the distribution observed in prior years. Most testlets took around 7 minutes or less to complete, with mathematics testlets generally taking less time than ELA testlets. Time per testlet may have been affected by student breaks during the assessment or use of accessibility supports. Testlets with shorter than expected administration times are included in an extract made available to each state education agency. State agency staff can use this information to monitor assessment administration and address as necessary. Testlets time out after 90 minutes.

 Table 4.1

 Distribution of Response Times per Testlet in Minutes

Grade	Min	Median	Mean	Max	25Q	75Q
English language arts						
3	0.1	3.9	4.8	88.6	2.6	5.9
4	0.2	4.0	5.0	86.4	2.7	6.1
5	0.1	4.0	5.0	87.0	2.7	6.2
6	0.1	4.1	5.0	89.8	2.7	6.2
7	0.2	4.6	5.7	85.9	2.9	7.2
8	0.2	4.1	5.0	87.7	2.7	6.2
11	0.3	4.7	6.2	89.4	2.9	7.4
Mathematics						
3	0.1	1.8	2.5	88.5	1.1	3.0
4	0.0	1.4	2.0	84.6	0.9	2.3
5	0.1	1.6	2.2	88.1	1.0	2.6
6	0.1	1.6	2.2	79.5	1.0	2.6
7	0.1	1.5	2.2	89.3	0.9	2.6
8	0.1	1.5	2.2	77.4	0.9	2.5
11	0.1	1.6	2.4	82.3	1.0	2.8


Note. Min = minimum; Max = maximum; 25Q = lower quartile; 75Q = upper quartile.

4.2.2. Device Use

Testlets may be administered on a variety of devices. Kite Student Portal captured the operating system used for each testlet completed. Although these data do not capture specific devices used to complete each testlet (e.g., SMART Board, switch system, etc.), they provide high-level information about how students access assessment content. For example, we can identify how often an iPad is used relative to a Chromebook or traditional personal computer. Figure 4.1 shows the number of testlets completed on each operating system by subject and linkage level for 2022–2023. In Pennsylvania, 52% of testlets were completed on a Chromebook, 28% were completed on an iPad, 17% were completed on a personal computer, and 3% were completed on a Mac.

Figure 4.1Distribution of Devices Used for Completed Testlets

Note. PC = personal computer.

4.2.3. Adaptive Delivery

The ELA and mathematics assessments are adaptive between testlets. In spring 2023, the same routing rules were applied as in prior years. That is, the linkage level associated with the next testlet a student received was based on the student's performance on the most recently administered testlet, with the specific goal of maximizing the match of student knowledge and skill to the appropriate linkage level content.

- The system adapted up one linkage level if the student responded correctly to at least 80% of the items measuring the previously tested EE. If the previous testlet was at the highest linkage level (i.e., Successor), the student remained at that level.
- The system adapted down one linkage level if the student responded correctly to less than 35% of the items measuring the previously tested EE. If the previous testlet was at the lowest linkage level (i.e., Initial Precursor), the student remained at that level.
- Testlets remained at the same linkage level if the student responded correctly to between 35% and 80% of the items on the previously tested EE.

The linkage level of the first testlet assigned to a student was based on First Contact Survey responses. The correspondence between the First Contact complexity bands and first assigned linkage levels are shown in Table 4.2.

Table 4.2

Correspondence of Complexity Bands and Linkage Levels

First Contact complexity band	Linkage level
Foundational	Initial Precursor
Band 1	Distal Precursor
Band 2	Proximal Precursor
Band 3	Target

Following the spring 2023 administration, analyses were conducted to determine the mean percentage of testlets that were adapted by the system from the first to second testlet administered for students within a grade, subject, and complexity band. The aggregated results can be seen in Table 4.3 and Table 4.4 for ELA and mathematics, respectively.

Due to small sample size, data regarding the adaptation of linkage levels in Pennsylvania was unavailable for grade 9 across both subjects. For the majority of students across grades 3 through 8 and 11 who were assigned to the Foundational Complexity Band by the First Contact Survey, the system did not adapt testlets to a higher linkage level after the first assigned testlet (ranging from 57% to 87% across both subjects). Consistent patterns were not as apparent for students who were assigned Complexity Band 1, Complexity Band 2, or Complexity Band 3. Distributions across the three categories were more variable across grades and subjects. Results indicate that linkage levels of students assigned to higher complexity bands are more variable with respect to the direction in which students move between the first and second

Chapter 4 – Assessment Delivery

¹ See Chapter 4 of the 2021–2022 Technical Manual—Year-End Model (DLM Consortium, 2022) for more details.

2022–2023 Technical Manual Update
Dynamic Learning Maps Alternate Assessment System
Pennsylvania Supplement

testlets. However, this finding of more variability in the adaptation patterns in the higher complexity bands is consistent with prior years. Several factors may help explain these results, including more variability in student characteristics within this group and content-based differences across grades and subjects. Further exploration is needed in this area.

Table 4.3Adaptation of Linkage Levels Between First and Second English Language Arts Testlets (N = 17,196)

	Founda	ational		Band 1			Band 2			Band 3	
Grade	Adapted up (%)	Did not adapt (%)	Adapted up (%)	•		Adapted up (%)	Did not adapt (%)	Adapted down (%)	Adapted up (%)	Did not adapt (%)	Adapted down (%)
Grade 3	15.1	84.9	64.2	20.0	15.8	80.4	11.8	7.8	83.9	14.3	1.8
Grade 4	29.3	70.7	13.9	30.2	55.9	63.7	25.6	10.7	55.7	14.8	29.6
Grade 5	27.1	72.9	26.8	30.0	43.2	66.4	28.9	4.7	93.5	6.0	0.5
Grade 6	25.5	74.5	10.6	21.6	67.8	23.9	41.1	35.0	50.2	35.5	14.4
Grade 7	26.7	73.3	27.6	24.0	48.4	51.0	36.5	12.5	69.3	25.3	5.5
Grade 8 Grade 9	41.9	58.1 *	28.2	29.0	42.8	74.5 *	17.9	7.6 *	87.3	8.9	3.8
Grade 10	*	*	*	*	*	*	*	*	*	*	*
Grade 11 Grade 12	39.9	60.1	6.8	38.7	54.5 *	58.3	26.1	15.5	66.7	24.3	9.1

Note. Foundational is the lowest complexity band, so the system could not adapt testlets down a linkage level.

Table 4.4Adaptation of Linkage Levels Between First and Second Mathematics Testlets (N = 17,194)

	Founda	ational		Band 1			Band 2			Band 3	
Grade	Adapted up (%)	Did not adapt (%)	Adapted up (%)	Did not adapt (%)	Adapted down (%)	Adapted up (%)	Did not adapt (%)	Adapted down (%)	Adapted up (%)	Did not adapt (%)	Adapted down (%)
Grade 3	14.4	85.6	10.8	33.2	56.1	16.1	58.1	25.8	65.8	17.8	16.4
Grade 4	12.7	87.3	19.4	33.5	47.1	70.1	23.5	6.4	73.8	23.0	3.3
Grade 5	14.1	85.9	12.0	29.5	58.4	46.2	26.0	27.8	75.9	19.8	4.3
Grade 6	17.0	83.0	10.5	43.4	46.1	29.9	39.5	30.6	49.1	46.9	3.9
Grade 7	15.6	84.4	8.1	27.3	64.6	15.2	20.1	64.7	76.7	16.6	6.6
Grade 8 Grade 9	22.2	77.8 *	11.0	49.8	39.3	28.7	58.1	13.2	50.3	23.6	26.2
Grade 10	*	*	*	*	*	*	*	*	*	*	*
Grade 11 Grade 12	42.6	57.4 *	9.4	25.9	64.7	26.7	41.4	31.9 *	12.2	9.4	78.3 *

Note. Foundational is the lowest complexity band, so the system could not adapt testlets down a linkage level.

4.2.4. Administration Incidents

DLM staff annually evaluate testlet assignment to promote correct assignment of students to testlets. Administration incidents that have the potential to affect scoring are reported to state education agencies in a supplemental Incident File. No incidents were observed during the 2022–2023 operational assessment windows. Assignment of testlets will continue to be monitored in subsequent years to track any potential incidents and report them to state education agencies.

4.2.5. Accessibility Support Selections

Accessibility supports provided in 2022–2023 were the same as those available in previous years. The DLM *Accessibility Manual* (DLM Consortium, 2023b) distinguishes accessibility supports that are provided in Kite Student Portal via the Personal Needs and Preferences Profile, require additional tools or materials, or are provided by the test administrator outside the system. Table 4.5 shows selection rates for the three categories of accessibility supports. Overall, 16,093 students enrolled in the DLM system (86%) had at least one support selected. The most commonly selected supports in 2022–2023 were human read aloud, spoken audio, and test administrator enters responses for student. For a complete description of the available accessibility supports, see Chapter 4 of the *2021–2022 Technical Manual—Year-End Model* (DLM Consortium, 2022).

Table 4.5

Accessibility Supports Selected for Pennsylvania Students (N = 16,093)

Support	n	%
Supports provided in Kite Student Portal		
Spoken audio	9,490	50.9
Magnification	2,550	13.7
Color contrast	1,460	7.8
Overlay color	560	3.0
Invert color choice	450	2.4
Supports requiring additional tools/materials		
Individualized manipulatives	4,760	25.5
Calculator	4,750	25.5
Single-switch system	630	3.4
Alternate form-visual impairment	360	1.9
Two-switch system	140	8.0
Uncontracted braille	20	0.1
Supports provided outside the system		
Human read aloud	13,740	73.6
Test administrator enters responses for student	8,620	46.2
Partner-assisted scanning	800	4.3
Sign interpretation of text	260	1.4
Language translation of text	160	0.9

4.3. Evidence From Test Administrators

This section describes evidence collected from the spring 2023 test administrator survey. Test administrators receive one survey per rostered DLM student, which annually collects information about that student's assessment experience. As in previous years, the survey was distributed to test administrators in Kite Student Portal, where students completed assessments. Instructions indicated the test administrator should complete the survey after administration of the spring assessment; however, users can complete the survey at any time. The survey consisted of three blocks. Blocks 1 and 3 were administered in every survey. Block 1 included questions about the test administrator's perceptions of the assessments and the student's interaction with the content, and Block 3 included questions about the test administrator's background, to be completed once per administrator. Block 2 was spiraled, so test administrators received one randomly assigned section. In these sections, test administrators were asked about one of the following topics per survey: relationship of the assessment to ELA, mathematics, or science instruction.

4.3.1. User Experience With the DLM System

A total of 3,733 test administrators (83%) from Pennsylvania responded to the survey about 12,743 students' experiences. Test administrators are instructed to respond to the survey separately for each of their students. Participating Pennsylvania test administrators responded to surveys for between 1 and 54 students, with a median of 2 students. Pennsylvania test administrators reported having an average of 11 years of experience in ELA, 11 years in mathematics, and 10 years teaching students with significant cognitive disabilities.

The following sections summarize responses regarding both educator and student experience with the system.

4.3.1.1. Educator Experience

Test administrators were asked to reflect on their own experience with the assessments as well as their comfort level and knowledge administering them. Most of the questions required test administrators to respond on a 4-point scale: *strongly disagree, disagree, agree, or strongly agree.* Responses are summarized in Table 4.6.

Nearly all Pennsylvania test administrators (97%) agreed or strongly agreed that they were confident administering DLM testlets. Most respondents (94%) agreed or strongly agreed that the Required Test Administrator Training prepared them for their responsibilities as test administrators. Most test administrators agreed or strongly agreed that they had access to curriculum aligned with the content that was measured by the assessments (87%) and that they used the manuals and the Educator Resource page (92%).

Table 4.6Test Administrator Responses Regarding Test Administration

	S	SD	ĺ	D	А		S	A	A+5	SA
Statement	n	%	n	%	n	%	n	%	n	%
I was confident in my ability to deliver DLM testlets.	36	1.1	63	2.0	1,346	41.9	1,771	55.1	3,117	97.0
Required Test Administrator Training prepared me for the responsibilities of a test administrator.	59	1.8	140	4.4	1,523	47.5	1,486	46.3	3,009	93.8
I have access to curriculum aligned with the content measured by DLM assessments.	85	2.6	341	10.6	1,580	49.2	1,208	37.6	2,788	86.8
I used manuals and/or the DLM Educator Resource Page materials.	64	2.0	203	6.3	1,700	53.0	1,242	38.7	2,942	91.7

Note. SD = strongly disagree; D = disagree; A = agree; SA = strongly agree; A+SA = agree and strongly agree.

4.4. Conclusion

Delivery of the DLM system was designed to align with instructional practice and be responsive to individual student needs. Assessment delivery options allow for necessary flexibility to reflect student needs while also including constraints to maximize comparability and support valid interpretation of results. The dynamic nature of DLM assessment administration is reflected in adaptive delivery between testlets. Evidence collected from the DLM system and test administrators indicates that students are able to successfully interact with the system to demonstrate their knowledge, skills, and understandings.

5. Modeling

The Dynamic Learning Maps® (DLM®) Alternate Assessment System draws upon a well-established research base in cognition and learning theory but relatively uncommon operational psychometric methods to provide feedback about student performance. The approach uses innovative operational psychometric methods to provide feedback about student mastery of skills. For a complete description of the psychometric model used to calibrate and score the DLM assessments, the psychometric background, the structure of the assessment system suitability for diagnostic modeling, and a detailed summary of the procedures used to calibrate and score DLM assessments, see Chapter 5 of the 2021–2022 Technical Manual—Year-End Model (DLM Consortium, 2022).

6. Standard Setting

The standard setting process for the Dynamic Learning Maps® (DLM®) Alternate Assessment System in English language arts (ELA) and mathematics derived cut points for assigning students to four performance levels based on results from the 2014–2015 DLM alternate assessments and an adjustment process in spring 2022. For a description of the process, including the development of policy performance level descriptors, the 4-day standard setting meeting, follow-up evaluation of impact data and cut points, the 2022 standards adjustment process, and specification of grade- and content-specific performance level descriptors, see Chapter 6 of the 2021–2022 Technical Manual—Year-End Model (DLM Consortium, 2022).

7. Reporting and Results

Chapter 7 of the Dynamic Learning Maps[®] (DLM[®]) Alternate Assessment System *2021–2022 Technical Manual—Year-End Model* (DLM Consortium, 2022) describes assessment results for the 2021–2022 academic year, including student participation and performance summaries and an overview of data files and score reports delivered to state education agencies.

This chapter presents Pennsylvania-specific 2022–2023 student participation data; the percentage of students achieving at each performance level; and subgroup performance by gender, race, ethnicity, and English learner status. This chapter also reports the distribution of students by the highest linkage level mastered during spring 2023.

For a complete description of score reports and interpretive guides, see Chapter 7 of the 2021–2022 *Technical Manual—Year-End Model* (DLM Consortium, 2022).

7.1. Student Participation

During spring 2023, assessments were administered to 17,202 students in Pennsylvania. The assessments were administered by 4,295 educators in 2,077 schools and 718 school districts. A total of 278,741 test sessions were administered during the spring assessment window. One test session is one testlet taken by one student. Only test sessions that were complete at the close of the spring assessment window counted toward the total sessions.

Table 7.1 summarizes the number of students assessed in each grade. In grades 3–8, over 2,430 students participated in each grade. In high school, only students in grade 11 participated.

Table 7.1

Student Participation by Grade (N = 17,202)

Grade	Students (n)
3	2,610
4	2,480
5	2,570
6	2,440
7	2,440
8	2,430
11	2,200

Note. Counts were randomly rounded to the nearest 10.

Table 7.2 summarizes the demographic characteristics of the students who participated in the spring 2023 administration. The majority of participants were male (68%), White (52%), and non-Hispanic (84%). About 6% of students were monitored or eligible for English learning services.

Table 7.2Demographic Characteristics of Participants (N = 17,202)

Subgroup	n	%
Gender		
Male	11,740	68.3
Female	5,460	31.7
Race		
White	8,920	51.9
African American	3,890	22.6
Two or more races	3,520	20.5
Asian	770	4.5
American Indian	90	0.5
Native Hawaiian or Pacific Islander	10	0.1
Hispanic ethnicity		
Non-Hispanic	14,430	83.8
Hispanic	2,780	16.2
English learning (EL) participation		
Not EL eligible or monitored	16,100	93.6
EL eligible or monitored	1,100	6.4

In addition to the spring assessment window, instructionally embedded assessments are also made available for educators to optionally administer to students during the year. Results from the instructionally embedded assessments do not contribute to final summative scoring but can be used to guide instructional decision-making. A total of 1 student in Pennsylvania took at least one instructionally embedded testlet during the 2022–2023 academic year.

Table 7.3 summarizes the number of instructionally embedded testlets taken in ELA and mathematics. In Pennsylvania, students took 1 ELA testlets during the instructionally embedded window.

Table 7.3Number of Instructionally Embedded Testlets by Grade and Subject (N = 1)

Grade	English language arts	Mathematics
11	1	0
Total	1	0

7.2. Student Performance

Student performance on DLM assessments is interpreted using cut points determined by a standard setting study². Student achievement is described using four performance levels. A student's performance level is determined by the total number of linkage levels mastered across the assessed Essential Elements (EEs).

For the spring 2023 administration, student performance was reported using four performance levels:

- The student demonstrates *Emerging* understanding of and ability to apply content knowledge and skills represented by the EEs.
- The student's understanding of and ability to apply targeted content knowledge and skills represented by the EEs is Approaching the Target.
- The student's understanding of and ability to apply content knowledge and skills represented by the EEs is *At Target*. This performance level is considered meeting achievement expectations.
- The student demonstrates *Advanced* understanding of and ability to apply targeted content knowledge and skills represented by the EEs.

7.2.1. Overall Performance

Table 7.4 reports the percentage of Pennsylvania students achieving at each performance level from the spring 2023 administration for ELA and mathematics. In ELA, the percentage of students who achieved at the At Target or Advanced levels (i.e., proficient) ranged from approximately 20% to 39%. In mathematics, the percentage of students meeting or exceeding At Target expectations ranged from approximately 10% to 47%.

² For a description of the standard setting process used to determine the cut points, see Chapter 6 of the *2021–2022 Technical Manual—Year-End Model* (DLM Consortium, 2022).

Table 7.4Percentage of Students by Grade and Performance Level

Grade	n	Emerging	Approaching	At Target	Advanced	At Target +		
		(%)	(%)	(%)	(%)	Advanced		
		. ,		, ,	, ,	(%)		
English lar	nguage arts							
3	2,610	53.6	17.6	27.2	1.5	28.7		
4	2,470	55.1	25.1	18.2	1.6	19.8		
5	2,580	45.7	17.1	32.6	4.7	37.2		
6	2,450	44.1	23.7	22.9	9.4	32.2		
7	2,450	37.1	26.1	24.5	12.2	36.7		
8	2,440	35.7	32.8	30.3	1.2	31.6		
11	2,200	30.5	30.5	31.8	7.3	39.1		
Mathemati	cs							
3	2,620	56.9	16.0	19.1	8.0	27.1		
4	2,470	44.9	7.7	32.4	15.0	47.4		
5	2,580	42.6	22.9	17.1	17.4	34.5		
6	2,460	55.7	25.6	10.6	8.1	18.7		
7	2,450	64.1	19.2	9.8	6.9	16.7		
8	2,440	52.0	37.7	7.8	2.5	10.2		
11	2,200	39.1	32.7	27.3	0.9	28.2		

7.2.2. Subgroup Performance

Data collection for DLM assessments includes demographic data on gender, race, ethnicity, and English learning status. Table 7.5 and Table 7.6 summarize the Pennsylvania disaggregated frequency distributions for ELA and mathematics performance levels, respectively, collapsed across all assessed grade levels.

Table 7.5ELA Performance Level Distributions by Demographic Subgroup (N = 17,196)

	Eme	Emerging		Approaching		At Target		Advanced		At Target + Advanced	
Subgroup	n	%	n	%	n	%	n	%	n	%	
Gender											
Male	5,120	43.7	2,810	24.0	3,160	27.0	630	5.4	3,790	32.3	
Female	2,350	43.0	1,390	25.5	1,430	26.2	290	5.3	1,720	31.5	
Race											
White	3,650	41.0	2,150	24.1	2,560	28.7	550	6.2	3,110	34.9	
African American	1,710	43.8	1,020	26.2	1,000	25.6	170	4.4	1,170	30.0	
Two or more races	1,620	46.0	880	25.0	870	24.7	150	4.3	1,020	29.0	
Asian	450	58.4	140	18.2	140	18.2	40	5.2	180	23.4	
American Indian	30	33.3	20	22.2	30	33.3	10	11.1	40	44.4	
Native Hawaiian or Pacific Islander	10	25.0	10	25.0	10	25.0	10	25.0	20	50.0	
Hispanic ethnicity											
Non-Hispanic	6,170	42.8	3,500	24.3	3,930	27.3	810	5.6	4,740	32.9	
Hispanic	1,290	46.7	700	25.4	670	24.3	100	3.6	770	27.9	
English learning (EL) participation											
Not EL eligible or monitored	6,940	43.1	3,910	24.3	4,360	27.1	880	5.5	5,240	32.6	
EL eligible or monitored	530	48.2	290	26.4	240	21.8	40	3.6	280	25.5	

Table 7.6

Mathematics Performance Level Distributions by Demographic Subgroup (N = 17,194)

	Emerging		Approaching		At Target		Advanced		At Target + Advanced	
Subgroup	n	%	n	%	n	%	n	%	n	%
Gender										
Male	5,850	49.8	2,600	22.1	2,160	18.4	1,130	9.6	3,290	28.0
Female	2,920	53.5	1,340	24.5	850	15.6	350	6.4	1,200	22.0
Race										
White	4,370	49.0	2,120	23.8	1,610	18.0	820	9.2	2,430	27.2
African American	2,040	52.3	910	23.3	660	16.9	290	7.4	950	24.4
Two or more races	1,850	52.7	760	21.7	620	17.7	280	8.0	900	25.6
Asian	460	59.7	130	16.9	100	13.0	80	10.4	180	23.4
American Indian	40	44.4	20	22.2	20	22.2	10	11.1	30	33.3
Native Hawaiian or Pacific Islander	10	33.3	10	33.3	0	0.0	10	33.3	10	33.3
Hispanic ethnicity										
Non-Hispanic	7,290	50.6	3,340	23.2	2,520	17.5	1,270	8.8	3,790	26.3
Hispanic	1,470	53.1	600	21.7	490	17.7	210	7.6	700	25.3
English learning (EL) participation										
Not EL eligible or monitored	8,170	50.8	3,700	23.0	2,830	17.6	1,390	8.6	4,220	26.2
EL eligible or monitored	600	54.5	240	21.8	180	16.4	80	7.3	260	23.6

7.3. Mastery Results

As described above, student performance levels are determined by applying cut points to the total number of linkage levels mastered in each subject. This section summarizes student mastery of assessed EEs and linkage levels.

7.3.1. Linkage Level Mastery

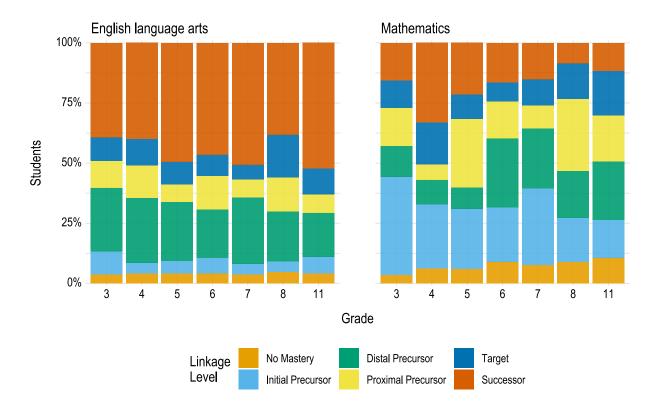

Scoring for DLM assessments determines the highest linkage level mastered for each EE. This section summarizes the distribution of students by highest linkage level mastered across all EEs. For each student, the highest linkage level mastered across all tested EEs was calculated. Then, for each grade, the number of students with each linkage level as their highest mastered linkage level across all EEs was summed and then divided by the total number of students who tested in the grade and subject. This resulted in the proportion of students for whom each level was the highest linkage level mastered.

Figure 7.1 displays the percentage of Pennsylvania students who mastered each linkage level as the highest linkage level across all assessed EEs for ELA and mathematics. For example, across all grade 3 mathematics EEs, the Initial Precursor level was the highest level that 41% of students mastered. The percentage of students who mastered the Target or Successor linkage level as their highest level ranged from approximately 49% to 63% in ELA and from approximately 23% to 51% in mathematics.

Figure 7.1

Students' Highest Linkage Level Mastered Across English Language Arts and Mathematics Essential Elements by Grade

7.4. Data Files

DLM assessment results were made available to DLM state education agencies following the spring 2023 administration. Similar to prior years, the General Research File (GRF) contained student results, including each student's highest linkage level mastered for each EE and final performance level for the subject for all students who completed any testlets. In addition to the GRF, the states received several supplemental files. Consistent with prior years, the special circumstances file provided information about which students and EEs were affected by extenuating circumstances (e.g., chronic absences), as defined by each state. State education agencies also received a supplemental file to identify exited students. The exited students file included all students who exited at any point during the academic year. In the event of observed incidents during assessment delivery, state education agencies are provided with an incident file describing students impacted; however, no incidents occurred during 2022–2023.

Consistent with prior delivery cycles, state education agencies were provided with a two-week window following data file delivery to review the files and invalidate student records in the GRF. Decisions about whether to invalidate student records are informed by individual state policy. If changes were made to the GRF, state education agencies submitted final GRFs via Educator Portal. The final GRF was used to generate score reports.

7.5. Score Reports

Assessment results were provided to state education agencies to report to parents/guardians, educators, and local education agencies. Individual Student Score Reports summarized student performance on the assessment by subject. Several aggregated reports were provided to state and local education agencies, including reports for the classroom, school, district, and state.

No changes were made to the structure of individual or aggregated reports during spring 2023. For a complete description of score reports, including aggregated reports, see Chapter 7 of the 2021–2022 Technical Manual—Year-End Model (DLM Consortium, 2022).

7.5.1. Individual Student Score Reports

Similar to prior years, Individual Student Score Reports included two sections: a Performance Profile section, which describes student performance in the subject overall, and a Learning Profile section, which provides detailed reporting of student mastery of individual skills. Chapter 7 of the 2021–2022 Technical Manual—Year-End Model (DLM Consortium, 2022) describes evidence related to the development, interpretation, and use of Individual Student Score Reports and contains sample pages of the Performance Profile and Learning Profile.

7.6. Quality-Control Procedures for Data Files and Score Reports

No changes were made to the quality-control procedures for data files and score reports for 2022–2023. For a complete description of quality-control procedures, see Chapter 7 of the 2021–2022 Technical Manual—Year-End Model (DLM Consortium, 2022).

7.7. Conclusion

Results for DLM assessments include students' overall performance levels and mastery decisions for each assessed EE and linkage level. During spring 2023, assessments were administered to 17,202 students in Pennsylvania. Between 10% and 47% of Pennsylvania students achieved at the At Target or Advanced levels across all grades and subjects.

Lastly, following the spring 2023 administration, three data files were delivered to state education agencies: the GRF, the special circumstance code file, and the exited students file. No changes were made to the structure of data files, score reports, or quality-control procedures during 2022–2023.

8. Reliability

The Dynamic Learning Maps[®] (DLM[®]) Alternate Assessment System uses diagnostic classification models to produce student score reports. As such, evidence for the reliability of results is based on methods that are commensurate with the models used to produce score reports. For a complete description of the simulation-based methods used to calculate reliability for DLM assessments and the psychometric background for these methods, see Chapter 8 of the *2021–2022 Technical Manual—Year-End Model* (DLM Consortium, 2022).

9. Training and Professional Development

To support the instruction and the implementation of the Dynamic Learning Maps[®] (DLM[®]) Alternate Assessment System, training is offered for state and local education agency staff and test administrators. Additionally, optional professional development is provided for teachers and other staff.

For a complete description of facilitated and self-directed training for DLM assessments, including a description of training for state and local education agency staff, see Chapter 9 of the 2021–2022 Technical Manual—Year-End Model (DLM Consortium, 2022).

For a description of the optional professional development available for the Dynamic Learning Maps[®] (DLM[®]) Alternate Assessment System during 2022–2023, see Chapter 9 of the *2022–2023 Technical Manual Update—Year-End Model* (DLM Consortium, 2023a).

10. Validity Argument

The Dynamic Learning Maps[®] (DLM[®]) Alternate Assessment System is based on the core belief that all students should have access to challenging, grade-level academic content. Therefore, the DLM assessments provide students with the most significant cognitive disabilities the opportunity to demonstrate what they know and can do. It is designed to map students' learning after a full year of instruction.

The DLM system completed its ninth operational administration year in 2022–2023. The chapters of the 2022–2023 Technical Manual Update—Year-End Model (DLM Consortium, 2023a) provide updated evidence from the 2022–2023 year to support the propositions and assumptions that undergird the assessment system as described at the onset of its design in the DLM theory of action. Chapter 10 of the 2022–2023 Technical Manual Update—Year-End Model (DLM Consortium, 2023a) summarizes that manual's contents and describes plans for future studies. For a complete summary of evidence collected for the DLM theory of action, also see the 2021–2022 Technical Manual—Year-End Model (DLM Consortium, 2022).

11. References

- Dynamic Learning Maps Consortium. (2022). 2021–2022 Technical Manual—Year-End Model. University of Kansas, Accessible Teaching, Learning, and Assessment Systems.
- Dynamic Learning Maps Consortium. (2023a). 2022–2023 Technical Manual Update—Year-End Model. University of Kansas, Accessible Teaching, Learning, and Assessment Systems.
- Dynamic Learning Maps Consortium. (2023b). *Accessibility Manual 2022–2023*. University of Kansas, Accessible Teaching, Learning, and Assessment Systems.
- Dynamic Learning Maps Consortium. (2023c). *Educator Portal User Guide*. University of Kansas, Accessible Teaching, Learning, and Assessment Systems.
- Dynamic Learning Maps Consortium. (2023d). *Test Administration Manual 2022–2023*. University of Kansas, Accessible Teaching, Learning, and Assessment Systems.
- Matthews, G. J., & Harel, O. (2011). Data confidentiality: A review of methods for statistical disclosure limitation and methods for assessing privacy. *Statistics Surveys*, *5*, 1–29. https://doi.org/10.1214/11-SS074