Blending Psychometrics with Bayesian Inference Networks: Measuring Hundreds of Latent Variables Simultaneously

Jonathan Templin
Department of Educational Psychology
Achievement and Assessment Institute
University of Kansas
Today’s Talk

• The issue: psychometric modeling for the Dynamic Learning Maps (DLM) project
 ➢ DLM overview
 ➢ Bayesian Inference Networks in DLM

• Discussion of psychometric models that parallel DLM BINs
 ➢ Comparison of terminology

• DLM psychometric model and estimator

• Initial results
THE DYNAMIC LEARNING MAPS PROJECT
Key features of the DLM Project

- Instructionally-embedded assessments
- Instructionally relevant testlets
- Fine-grained learning maps
- A subset of particularly important nodes that serve as content standards – Essential Elements
- Accessibility and alternate pathways
- Dynamic assessment
- Status and growth reporting that is readily actionable
- Professional development
- A technology platform to tie it all together
Instructionally Embedded Tests

• Assessment is most useful when it is designed to help teachers help students learn
 ➢ Better to modify the assessment than modify the instruction
 ➢ Potentially easier to monitor growth

• Example: one task every other week for 30 weeks for a total of about 60 items
 ➢ Compared to a typical summative alternate assessment with perhaps 30 items
THE LEARNING MAP
A Portion of the Math Map
Prerequisites for Slope

M-906 explain y-coordinate

M-816 extend a symbolic pattern by applying the rule

M-971 generate ordered pairs from two distinct numerical patterns

M-2716 recognize correspondence (function)

M-2714 describe rate of change in a graph

M-905 explain x-coordinate

M-903 explain coordinate pairs (ordered pairs)

M-2700 recognize covariance

M-2712 recognize direction of covariation

M-2713 describe rate of change in a table

M-1401 determine slope based on coordinate pairs

M-1381 compare properties of two functions represented in the same way

M-2026 estimate average rate of change given graph

M-2025 explain average rate of change

M-1396 determine rate of change of linear functions

M-2709 compare two functions with different rate of change
Quick Facts about the Map

- **English Language Arts**
 - 141 foundational nodes
 - 1,645 ELA nodes
 - 538 Essential Elements
 - 3,982 edges/connections

- **Mathematics**
 - 141 foundational nodes
 - 2,312 mathematics nodes
 - 172 Essential Elements
 - 4,838 edges/connections

Items developed and tested on only a small set of these nodes currently
DLM Terminology

- DLM Terminology: straight from Bayesian Inference networks and graphical models

- Nodes: categorical latent variables
 - Analogs to latent factors in factor analysis or item response theory

- Nodes can be Parents or Children
 - Parents: Not predicted by anything (we would call this an Exogenous variable)
 - Children: Predicted by parents (we would call this an Endogenous variable)

- Edges: conditional dependencies between:
 - Nodes
 - Nodes and items

- The DLM “Learning Map” is called a Markov Blanket
 - Also called a Directed Acyclic Graph or DAG
Woefully Short Primer on Bayesian Networks

- BINs describe multivariate data using conditional probabilities

- In the image, three variables observed:
 - Did it rain?
 - Were the sprinklers on?
 - Was the grass wet?

- The BIN includes the set of parameters leading to the probabilities in the tables
Joint distribution of Rain, Sprinkler, and Grass Wet given by:

\[P(\text{Grass Wet} = T | \text{Rain, Sprinkler}) P(\text{Sprinkler} | \text{Rain}) P(\text{Rain}) \]

- Conditional/Marginal distribution of each variable: Bernoulli
- This example has all observed variables, but latent variables can also be defined
 - Hidden/unobserved nodes
• Here are some BINs that may be more familiar in the social sciences...

Diagram 1:
- **Nodes:** Observed variables (or more specifically, X, Y, and M)
- **Conditional/Marginal distribution:** Normal

Diagram 2:
- **Nodes:** 5 Observed variables (X1 – X5)
- **Nodes:** 1 unobserved variable (G)
- **Conditional/Marginal distribution:** Normal
More BIN Terminology

- **Network Learning/Training = Estimation of model parameters**
 - Often done with Bayesian/MCMC where priors are placed on nearly all parameters

- **Estimation typically done using cross-validation**
 - Estimation on one/several samples of data
 - Prediction done with left-out samples of data

- **From Psychometrics: Model fit...not evaluated in same way**
 - BIN model fit based on:
 - Prediction of left-out samples
 - Posterior predictive checks
 - Entropy (for categorical hidden nodes)
 - This is like saying your CFA model fits because your Omega reliability coefficient is high
ANOTHER DLM CATCH: ITEMS ARE IN TESTLETS
Item Types

- Single-select multiple choice
- Multi-select multiple choice
- Technology enhanced:
 - Sorting
 - Matching
 - Hot text (ELA)
- Teacher observation*
- Extended performance event*
Testlets in Linkage Levels

Connect the map... ...to the items developed.

Initial Precursor

Distal Precursor

Proximal Precursor

Target

Successors

Behavior

Testlet a

Behavior

Testlet b

Behavior

Testlet c

Behavior

Testlet d

Behavior

Testlet e

NCME 2015
DLM FROM A PSYCHOMETRICS PERSPECTIVE
Overall Goal: Develop Method to Evaluate Students

• DLM Project features a learning map

• “Nodes” on map are student-specific
 ➢ Informs instruction – what a student knows or does not know

• Process of determining student status is called “cognitive diagnosis”

• Term for larger set of psychometric tools that fall under an family of models that I call diagnostic classification models or DCMs
Diagnostic classification models (DCMs) have been called many different things

- Cognitive diagnosis models
- Skills assessment models
- Cognitive psychometric models
- Latent response models
- Restricted (constrained) latent class models
- Multiple classification models
- Structured located latent class models
- Structured item response theory
Path Diagram of Traditional Psychometrics vs. DCMs

Addition

Subtraction

Multiplication

Division

Basic Math Ability

2+3-1

4/2

⋯⋯

(4x2)+3

NCME 2015
Multiple Dimensions of Ability

- The set of nodes in the DLM “learning maps” represent the multiple dimensions of ability

- Other psychometric approaches have been developed for multiple dimensions
 - Multidimensional item response models
 - Subscores in classical test theory

- So...why not use something more familiar in testing?
 - Reliability of estimates is often poor for practical test lengths
 - Dimensions are often very highly correlated
 - Large samples are needed
Example Theoretical Reliability Comparison

DLM MODELING STRATEGY
Modeling Strategy: Text Description

• We consider items to be nested within testlets which interact with students

• The item model combines the loglinear cognitive diagnosis model (LCDM; Henson, Templin, & Willse, 2009) with a crossed random effect (e.g. Van den Noortgate, De Boeck, & Meulders, 2003) for within-testlet dependencies

• The functional form of the model resembles the LCDM/IRT combination model of Templin (in press) as used for testlets (Jurich and Bradshaw, under review)
Measurement Model (Items)

- Logit of a correct response \((X_{ei} = 1)\) to item \(i\) by examinee \(e\):
 \[
 \text{logit}(P(X_{ei} = 1|\alpha_{en})) = \lambda_{i,0} + \lambda_{i,1,(n)}\alpha_{en} + \gamma_{ei(t)}
 \]
- Where:
 \[
 \gamma_{ei(t)} \sim N(0, \sigma_{\gamma t}^2)
 \]

Structural Model (Nodes/Map Edges)

- Marginal node distribution is:
 \[
 \alpha_{en} \sim B \left(p_{\alpha n} = P(\alpha_{en} = 1|\alpha_{en'}) \right)
 \]
- With model for \(p_{\alpha n}\) conditional on precursor nodes:
 \[
 \text{logit}\left(P(\alpha_{en} = 1|\alpha_{en'}) \right) = \lambda_{n,0} + \lambda_{n,1,(n')}\alpha_{en'}
 \]
Model Parameter Descriptions

\[
\text{logit}(P(X_{ei} = 1|\alpha_{en})) = \lambda_{i,0} + \lambda_{i,1,(n)}\alpha_{en} + \gamma_{ei(t)}
\]

Here:

- \(\alpha_{en}\) is the mastery status of examinee \(e\) on node \(n\)
 - For masters, \(\alpha_{en} = 1\); for non-masters \(\alpha_{en} = 0\)
 - The value of \(\alpha_{en}\) is arbitrary: masters are not 1 unit higher in ability

- \(\lambda_{i,0}\) is the intercept
 - The log-odds of a correct response for non-masters when the testlet interaction is zero (average)

- \(\lambda_{i,1,n}\) is the “main effect” of mastery of node \(n\)
 - The difference in log-odds of correct response between masters and non-masters of the node

- \(\gamma_{ei(t)}\) is the testlet effect for examinee \(e\) and testlet \(t\)
Structural Model Parameters

\[
\text{logit}\left(P\left(\alpha_{en} = 1|\alpha_{en'}\right)\right) = \lambda_{n,0} + \lambda_{n,1,(n')} \alpha_{en'}
\]

Here:

- \(\alpha_{en'}\) is the mastery status of examinee \(e\) on node \(n'\)
 - For masters, \(\alpha_{en'} = 1\); for non-masters \(\alpha_{en'} = 0\)
 - The value of \(\alpha_{en'}\) is arbitrary: masters are not 1 unit higher in ability

- \(\lambda_{n,0}\) is the intercept
 - The log-odds of the probability of mastery for node \(\alpha_{en}\) for non-masters of node \(\alpha_{en'}\)

- \(\lambda_{n,1,(n')}\) is the “main effect” of mastery of node \(n'\)
 - The difference in log-odds of mastery for node \(\alpha_{en}\) between masters and non-masters of node \(\alpha_{en'}\)
The DLM Model Estimator

- Estimation via Metropolis-Hastings algorithm
 - Dates to physical chemistry (1950)

- All item/map parameters use uniform prior distribution

- All student node parameters had a prior distribution described by map parameters
 - We would call this an empirical prior in the Bayesian world
 - This is what is used in standard CFA/MLM/MIRT, etc...

- All testlet effects had a prior of a normal distribution with zero mean and estimated testlet variance
Wrapping Up

• The DLM project is an ambitious attempt to measure a lot of things simultaneously

• Early results show that more work is needed to ensure stable estimates of parameters are present

• Some of the map results suggest some nodes/attributes/factors aren’t present